
Information Security-5-Secure System Engineering
Professor Chester Rebeiro

Indian Institute of Technology, Madras
W2_2

Return to LibC Attacks

Hello and welcome to this lecture in the course for Secure System Engineering, in the previous

two lectures what we have seen was how an attacker could inject code in the stack of another

process for exploiting a buffer overflow vulnerability and then force that particular code to

execute. Later on we see two different mechanisms for this particular vulnerability. The first was

using canaries where buffer overflows were detected, the second is using something known as

the NX bit which is supported by the processors.

As we have seen in the previous lecture the NX bit would disable executing from that stack.

However security has always been a cat and mouse game the attackers would find a way to

create an exploit and then the defenders would then find a way to prevent that particular exploit

from running on their system. Now the attackers again would find a way to bypass this defense

mechanisms and still get their attack to run. So in this way there is a constant cycle between the

attackers and defenders and as a result the attacks are getting more and more powerful and

thereby better defend strategies are required to prevent these attacks.

In this particular lecture what we will look at is a new form of attack known as the Return to

LibC Attack, so this particular attack also exploits a buffer overflow vulnerability in the stack

however unlike the previous exploit that we have seen where code is executed from the stack in

this particular attack we do not execute any code form the stack and in this way the attack would

run even with the NX bit defense that is present for that particular stack. So let us see how this

attack proceeds.

(Refer Slide Time: 02:28)

Let us start of by understanding what LibC is, so LibC is a dynamically linked library that gets

attached to almost every C program that is written. Now the LibC contains implementations of

all the standard rather a large number of the standard C function cause that we are typically used

to for example string copy, print f, scan f, f open, f close string cat and so on are all present in

LibC so there are easily over thousand functions that are implemented in LibC.

(Refer Slide Time: 03:08)

Even the simple hello world program that we have written a few lectures back which essentially

just prints hello world by invoking the print f statement. Even this program has the LibC present

in its virtual address space, example if you look at this particular slide which displays the virtual

memory map for the hello world program we see that there are three entries corresponding to

LibC. So these three entries correspond to the entire LibC. Now LibC has as I mentioned over a

thousand different functions and all of this functions are present in this virtual address map and

can be access by any of this addresses that are present over here. So given that we know that

what LibC is let us see how a return to LibC attack actually works.

(Refer Slide Time: 04:06)

So just like the previous attack where the attacker overflowed a buffer and made the return

address point to this starting location of that particular buffer on the stack. In a similar way the

return to LibC attack would overflow the buffer and then replace the return address with some

other arbitrary address however this arbitrary address is now pointing to some particular function

in a LibC. So as we know LibC is part of the whole segment of the particular process and

therefore it can execute.

In other words, the NX bit is not set for the functions in LibC. So what happens over here is

assuming that this function F1 is a valid function in LibC we are overflowing the buffer until the

point where the return address rather the valid return address which is present on the stack is

replaced with the address for F1 which in fact is present in the code segment of the particular

process. So in this way we are able to subvert execution and in spite of the NX bit set we are able

to execute some arbitrary function present in the LibC. So the next question is what should be

this function F1?

(Refer Slide Time: 05:39)

So there are multiple options that are possible so one option that we will actually look at today is

known as the system function. So one function that we will look at for F1 is the function system.

Now system is a function which is present in LibC so it takes string as input rather it takes a

pointer to a string as input and this string contains an executable for example over here we have

system and we are passing the string slash bin slash bash so the result of this particular function

called would be that a bash shell gets created.

Now let us say that we want to build a payload which as before creates a shell this would mean

that we would require to subvert execution by a function like this like system and pass the slash

bin slash bash as the parameter to system. So this mean we require two things we need to specify

the address for system as the F1 address and overflow the buffer using that particular address of

system. Secondly somehow we should be able to pass a pointer to this particular string slash bin

slash bash so that system executes and it is able to obtain an argument which is slash bin slash

bash.

So to summarize what we need to mount a return to LibC attack is as follows, we need to find

the address of the system function in your LibC second we need to overflow the a buffer with

this particular address so that the written address located on the stack is replace by the address of

system. Secondly we need to pass the argument to system which essentially is a pointer to the

string slash bin slash bash. So let us see how this can take place.

(Refer Slide Time: 07:43)

So what we need essentially is a the stack layout which looks something like this. At the location

where the return address is stored we store the address of the system. Secondly at an offset of 4

bytes higher in the stack we have a character pointer which points to some location in the virtual

address space by the string slash bin slash bash is present. Now what happens here is that when

the function completes it execution and returns the written address is taken from the stack in this

case the return address is the system, execution is into the system function present in LibC and

the argument for this particular function is this character pointer pointing to slash bin slash bash.

So this function system in LibC would essentially execute the executable slash bin slash bash. So

the next thing that we need to do determine is the address of system and what exactly is this

particular pointer. So let us start with how we find out that in the entire virtual address space is

this particular function system present.

(Refer Slide Time: 09:03)

So this we can do as follows we can use something like GDB or any other tool like OBJDUMP

so on and run this GDB with this option and the executable and we set a break point at main, run

the program and when the break point is hit we say P system which means print system and as

we see over here we get this value of this particular thing which is 28085260 which essentially is

the address of the location where system function is present.

(Refer Slide Time: 09:42)

In a similar way we can find somewhere in the entire executable where the string slash bin slash

bash is present. So in this particular example over here we have considered the environment

variables that is present in the process. So as we see over here there is one particular line in this

environment variables which actually has the string slash bin slash bash. Now what we need to

find out is by using a something like GDB we determine the exact address where slash bash slash

bash is present. Now that we have identified where the address of system is present and also we

have found a string in the executable which contains slash bin slash bash and we found the

address of that particular string, we are ready to build our exploit.

(Refer Slide Time: 10:34)

So what we do is as follows, we overflow the buffer and at the location where the return address

was present we replace it with this particular address 0x28085260 which essentially is the

address for the system function present in LibC and at an offset of 4 bytes on the stack we have

the address bff (bffe25) which essentially is the pointer to the slash bin slash bash string but we

have found out in the environment. So when this particular program runs we would have the

bash slash bin slash bash getting executed.

Now in order that we terminate this particular program properly what we can additionally do is

add a function exit over here which essentially has the address 281130d0, so therefore what

happens now is the system function executes it takes slash bin slash bash pointer as argument

and after that function completes this particular function which points to the exit function would

get executed. So in this way we are able to subvert execution to the system function present in

LibC we are able to run a payload which in this case is the slash bin slash bash shell and then

also exit from this particular program.

(Refer Slide Time: 12:16)

One major advantage of the return to LibC attack is that it can work with a non-executable stack,

however there is a major limitation of the return to LibC attack. The limitation is that the attacker

is constraint by the functions that the LibC offers. For example if the LibC does not have a

system function then the attack which we have discussed in this particular lecture will not

function thus there is a limitation to what the attacker can do. In the next lecture we will look at

another attack known as the Return Oriented Programming or the ROP attack where the attacker

is not restricted to the functions that LibC supports but rather can create any arbitrary (play)

payloads, thank you.

