
Secure Systems Engineering
Prof. Chester Rebeiro

Indian Institute of Technology Madras
Mod_01 Lec_01

Hello and welcome to this course of Secure Systems Engineering, this course is a fifth in the

series of courses on information security that is offered by NPTEL, so this course is an eight-

week course and during this course will actually look at details about, aspects about security

systems, and essentially will look at aspects about how systems can be built to be more

secure, so let us start this particular class with a small introduction about what we mean by

Security Systems, if you look at a computer system. What are the threats for that computer

system? And what are the current practices to mitigate this threats.

(Refer Slide Time: 0:58)

So let us consider that a computer system is a close box like this, now this is a box and there

is no connections to the outside world, so as long as nothing enters this box or nothing leaves

this box the content of this box is safe, in a very similar way, when we consider computer

systems if the computer is totally disconnected from the external world, no information is

going into the computer and no information is going outside a computer, then we can say that

computer system is secure.

(Refer Slide Time: 1:33)

However, this is not what happens in practice, in practice there are a lot of viruses, worms

and spyware which are around a computer system, so these spyware may not be present in the

system, but it will be outside the system, and in such a case the system still secure, the reason

is that the information content in the system is enclosed by this box and is not affected by the

external malware or viruses or spyware, which is outside this particular box, therefore, in

such a scenario also we can consider that the computer system is still secure.

(Refer Slide Time: 2:17)

Now, consider that there is a flaw in this box, okay, so there is small flaw by which an

external malware or a virus or spyware could enter into this particular box and would result in

the system being not secure. Therefore, it is only this particular flaw, which is shown over

here that could lead to a system being not secure.

(Refer Slide Time: 2:40)

Now, let us look at what the different types of flaws are, so we could actually categorise a

different flaws in a computer system, in a multiple categories, so one thing is a flaw in the

design, example we have a processor and a processor as we know, is a highly complicated or

highly complex design, there are multiple molecules are large number of pipelines large

memories and all of these blocks are actually interacting with each other at very high

frequency and done a lot of operations per nano second.

Now, even a small flaw in this entire design could result in a wonderbility and it could lead to

an exploit that an attacker could use to gain access into that particular system, so one quite

famous flaw the Intel Pentiums floating-point bug, I would not go to into the details of this

particular a flaw, but you could actually look it up on Wikipedia and so on to see a roughly in

the mid-90s, how a flaw in the floating-point unit of Intel processors had led to a

wonderbility where when you do a floating point operation, the result would be incorrect.

Now this particular flaw much in several years later was then exploited by cryptographers to

create a tax on ciphers and therefore predict secret keys of the cipher by exploiting this

floating-point bug.

(Refer Slide Time: 4:22)

Next flaw that could hacker is hardware flaws, so these flaws could be intentional hardware

Trojans that are inserted at the time of manufacture by third parties. For example, when a

company actually designed circuit or design a VLSI chip and sends it for fabrication to a third

party, hardware Trojans may be inserted, this Trojan will be typically domain and not easy

detectable during the testing time of this particular chip, however, then this Trojan gets the

right trigger, then it wakes up and it could get access to the information that is getting

computed in the chip.

So these are other flaws and these hardware Trojans are big threat to computing systems these

days, essentially because it is extremely difficult to detect whether an IC or a processor or a

chip is having a hardware Trojan present within it.

(Refer Slide Time: 5:26)

The third aspect is of course what we are all familiar with it is the human factor and although

we would actually built a computing system. Let us say with no design flaws or with

somehow guarantee that there are no hardware Trojans or no hardware flaws, still eventually

would be a human who actually uses this system at least the many of the systems like smart

phones or laptops or desktops and so on, and this could be a reason for a wonderbility, for

example, all of us would have got some form of spam ware or expand emails or pop-up

windows that actually come up like as shown in this particular a slide and it is not surprising

that many people actually fall prey to these pop-ups and spam emails and would click on the

buttons pressing here as a result of this, it could trigger and external malware, virus or worm

or anything to enter into your system.

(Refer Slide Time: 6:37)

The fourth flaw that we were actually be looking at and spending a lot of time during this

course are due to bugs in the program. So then could be several bugs in a program which do

not get detected by the compiler or while testing the program, so let us for example, say that

we have programmer who is writing a program to say sort hundred numbers present in an

array, so he would use one of the standards sorts, like selection or bubble or quicksort and

compile the program get an executable, then he would run the program given input of say

hundred numbers and ensure that the output is actually sorted, but this actually shows that the

program is working correctly for the given.

However, there may be other bugs which are not detected so easily and these are the bugs

which are the flaws and an attacker would actually use to gain access into your system and

then control the system, so what we have seen over here are different types of flaws, we have

seen design flaws, hardware flaws, bugs in the program and the human factor.

Now, if an attacker wants to get access to your system, all that is required is just a one single

flaw, any one of these is sufficient for the attacker to get access into your system and

therefore control your entire system or steal secret data that is present in the system, in this

course we will be looking at this particular aspect, so you will be looking at bugs in the

system, and how an attacker could utilise these bugs to create malware or create exploits that

could be introduce into your system and then could run and steal data in your system.

(Refer Slide Time: 8:29)

There are quite a few such bugs present in different programming languages. So, but we will

be actually focusing on programming a bugs present in C and C++ programs. These fall into

this category of bugs in the systems software, so why we focus on C and C++ is due to the

fact that many systems software such as starting from operating systems to virtual machines

and lot of the underline libraries are written in C and C++ further these system software are

quite large, and they are susceptible to a lot of such programming bugs which could be away

that an attacker could enter and exploit the system, so we will be looking at during the course

at buffer overflows and buffer overreads, heaps double frees and use after free, integer

overflows and format string, so these bugs present in system software has been in the past

exploited quite a bit to create a malware that could attack your system. In addition to a bugs

in the system software, you could also have bugs in other applications that are present, one

common example is the SQL injection bug present in modern database systems, but we will

not be going into details about such application level wonderbilities.

And other aspects which is gaining quite importance is due to something known as Side

Channel Attacks, so these attacks differ quite considerably from the bugs like what we have

seen over here, while these like the bugs buffer overflows, heaps, integer overflows and

format strings are due to wonderbilities or due to flaws during the programming, side channel

attacks on the other hand, could be attacks on programs which are actually co-react correctly

without any presence of any bug. Later on in this course we will be actually looking how this

attacks are actually developed.

(Refer Slide Time: 10:40)

So now what we have seen is that a wonderbility in a system can be utilised by an attacker to

create malware which would enter into your system or gain access into your system through

that particular wonderbility, so we have seen that there are different types of such

wonderbilities or what we call as a flaws and we have seen that the flaws could occur due to

design aspects, due to hardware Trojans or due to programming bugs as well as due to the

human factor.

So there are many ways by which engineers and scientists have developed techniques by

which these flaws or these attacks on systems can be actually prevented or if not completely

prevented at least mitigated, so one of the best ways to prevent such kinds of attacks is the

first approach which, and it is quite, kind of the obvious approach that one would start off

with is, where we want a design systems without any flaws in such a case, what you say is

that we take our system which is represented here by this closed box and analyse the system

mathematically using tools such as static analysis, a formal proof assistants which has a COQ

model checkers and therefore certify that the system is completely flawless and as we know if

there are no flaws in the system, there are no wonderbilities and if there are no wonderbilities

that can be no attacks on the system.

However, the drawback here is that such a system is very difficult to develop, the reason

being that this form of analysis that is using static analysis or formal proofs are not very

scalable to large codes, therefore, a lot of this activities are restricted mostly in the academic

circles, so one such effort was made by an Australian group called NICTA where they

actually develop an operating system called SeL4 and they have been able to prove that SeL4

is flawless under certain assumptions therefore under these assumptions SeL4 does not have

any wonderbilities, these tools which can actually certify that, there are no such

wonderbilities in SeL4, and therefore SeL4 is flawless and cannot be exploited under these

assumptions.

However for all practical systems like standard operating systems like Linux or Windows

such, doing such a analysis would be its extremely difficult, given the current a technology of

these tools and therefore we would require other techniques to ensure that standard operating

systems like Linux and Windows are not affected by malware or any other kind of external

malicious code.

(Refer Slide Time: 13:51)

 Now that we cannot ensure that large systems can be built without flaws, what we will

actually come up with is a second approach where we will build system with having flaws,

but then encaptualte this particular system in something known as a sandbox environment, so

you could consider this sandbox environment as a container in which our system is actually

present, even though the system has flaws, malware is actually prevented from entering into

the system due to the sandbox container that is present in the system, so this technique also

takes care of human factor as well. Now if a user clicks on a link in a malicious website the

system would still remain secure, because of this close sandbox environment.

(Refer Slide Time: 14:44)

The third approach is to Detect and Mitigate attacks, so this is what typical antivirus software

does, so when a program executes the anti-virus software would monitor various

characteristics of the program and then identify whether this program is actually trying to do

something malicious or in other words, the anti-virus software would detect malicious code,

based on certain characteristics during the execution or based on certain characteristics of the

binary of that particular executable.

(Refer Slide Time: 15:19)

 In this particular course will be looking at both attacks as well as defences, so with respect to

the attacks we have been looking at attacks at the software, hardware level as well as side

channel attacks. Now this software attacks are mostly focused on the system software and

therefore will be looking at C and C++ programs, we have been understanding the bugs and

the wonderbilities present in these programs and how an exploit can be written to use these

particular wonderbilities.

For hardware and side channel attacks we will be studying various forms of this attacks are

such as the cache timing attacks, a power analysis attack and a fault injection attacks, now

side-by-side will be also looking at the popular defence strategies prevent such attacks, so

these defence strategies could be present either at the Compiler or at the Hardware or by

building special enclaves known as Trusted Computing Environments.

(Refer Slide Time: 16:24)

So what you can expect by the end of this course is that you will have a good understanding

about the internals of malware and other security threats, you would be able to evaluate

security measures and applied them to various quarts or various components from the

hardware operating system and the compiler and also you would be able to trade of between

the performance and security.

Now this third expect is very critical. So, for example, we could have highly secure system,

or we could developed a highly secure system, however, to execute or run any application on

that system would be a huge over hot and therefore it is very important to evaluate the trade

of obtain between performance of the system and the security achieved.

(Refer Slide Time: 17:08)

We will not be following any specific textbook in particular, but mostly it is search papers

and appropriate links would be provided at various stages during the videos and these links

would be present in the slides and you could actually download these links and read those

links to get more details about the concepts, so during the course will be evaluating and

analysing a lot of different programs. These programs are very small, but we will go quite in

depth to actually analyse these programs, so you could actually downloads these programs

from this bit bucket repository, which contains not just a programs, but also gives you a lot of

instructions about how to run this particular programs and also this repository would contains

slides and other assignments that you could try it. Thank you.

