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Hello and welcome back in this video we will look at variational auto encoders which are

class of generative models that provide a principled way to sample from the data distribution

or the model distribution. This is a brief outline of our talk in this video, so we will start off

with some introduction to auto encoders and what is meant by latent vector or latent space

and then we will move on to variational auto encoders and finally we will conclude with

variational interference which is the probabilistic interpretation of VAEs. So in this video we

will primarily focus on how variational auto encoders are used in deep learning context.
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So we will look at auto encoders, so they are class of neural network which are trained to

reconstruct the input. So if you are thinking of images as input, typically the most standard

involves seems to have a lot of applications in the computer vision or image or using images.

So let us say input data is some image let us say data set 28 cross 28 and the idea behind this

neural network is to reconstruct the output, so the output will be another image which will be

28 cross 28 and optimization in this case proceeds by making sure that your reconstruction

and inputs are consistent with each other, reconstruction loss is minimised.

Typical structure for auto encoder basically the input, you can think of it as a fully connected

neural network or an MLP then drag size the 28 by 28 image 4784 pixels and you (())(1:50)

layers with decreasing number of hidden neurons, so we come to a layer where which you

call the bottleneck layer and from there we have again successively increasing number of

hidden neurons in every layer till we get to the output which is the same size as the input

layer.

Now this  layer  from which  the  output  is  reconstructed  is  called  the,  we can  call  it  the

representation or the latent space okay, so we will denote it by Z ok. So the idea behind using

auto encoders is to obtain a reduced dimensions representation of input in the sense that it

retains most of the significant variations in your input enough to reconstruct, so that is the

whole idea behind training the auto encoders. However, there is no structure to the, it is very

hard to enforce some structure to the Z that we estimate. So typically you would have some



past  constraints  and  things  like  that  so  that  you  get  some  meaningful  representation,

otherwise it is difficult to impose some structures in Z.

So what we do is to take this a little bit further in fact, the names are similar of the names are

similar and the connection is very superficial because we can we can see that actually see

later, this come from probabilistic arguments which are much more structured and leads to a

more meaningful Z. So this Z as I mentioned earlier is referred to as the latent space or a

latent vector which is what we are trying to infer.

(Refer Slide Time: 3:24)

So what does this give us in terms of advantages, okay. So 1st that is the latent space or the

latent vector that we estimate is basically reduced dimensionality, so in the case of images if

you have very large images maybe it is possible to get a latent space representation which is

only maybe 2 or 3 parameters ok, or maybe hundreds of parameters instead of millions of

parameters  when  you  think  of  naturally  images.  And  what  we  do  with  this  latent

representation, the idea is the representation is actually can be actually used to create new

images or generate new data with sampling randomly from it. So what we ideally want is a

probabilistic or a probability density functions for F Z so that we can sample from it and from

there we can generate images which are close to the training data that we use ok.

So for instance, let us look at the digit generation right, so we have training data X of MNIST

digits, it is a 28 cross 28 images in (())(4:31) of them. And our purpose is to generate digits

like X but not really the same ones found in dataset alright, so which is like saying we want

to maximise this P of X that is typically we want in a generative model, we want a probability



model in our input data. So what would be a latent structure or latent space represent, so in

this case these are the things that we are unable to observe so we only observe once the

person has finished reading so we do not know what are the different strokes that he would

have used or she would have used.

And there are also other things like orientation, how big are fonts, how thick are the strokes,

so on and so forth, these are some of the latent structures or the latent space involved in the

output that we see, which is basically the digits, the observation that we make is the digit

itself or the image of the digit itself but what went on to creating it we do not know ok. So

what we are trying to do is to model that latent data, so basically we model that as in the form

of a latent space from which we sampled this vector Z ok, so Z is a random vector usually

with lesser dimensions than that of the input data. And what we also want is a distribution for

Z okay, so we can have a prior distribution for Z ok from which we can sample Z and we can

also define a posterior distribution and this is what most people are interested in that is given

this data set, what would be the most likely Z values that we can have okay.

So once we have this distribution then we can sample this Z from the distribution and map it

to Sample X, so that is the idea behind variational auto encoders is to infer this distribution P

of Z given X so that we can use that to sample from one of the distributions X ok.

(Refer Slide Time: 6:34)

Basically, as I mentioned earlier the idea is to map training data in this case input images to a

latent  space using a neural network ok. And the latent space is basically the Z, which is

posterior  distribution P of Z,  X so that  is  the P of Z,  X Z given X sorry. And the prior



distribution, we have some assumptions about prior distribution and we usually model them

as  Gaussian  distribution  ok.  The  output  of  the  network  which  provides  P of  Z given  X

basically has, it does not exactly gives you samples from P of Z given X, instead it gives you

since it is a matrix, it does a Gaussian, it gives you two parameters basically the mean and

covariance value of the distribution okay.

Now we draw a random sample from the latent space, so once we know the mean so we

would know Mu and we also know the covariance matrix, so using given this information, we

can sample Z from this latent space and use that to generate data which is similar to the

trained data X ok. So how is that done? So again not very surprising, we will use another

neural network which will Sample from Mu, Z that are depicted take that as input and map it

to an output which is very similar to your input data or input images. So if you take MNIST

digits, you would map from your sample of latent vector to a digit which looks like it came

from the training data distribution ok.

Of course you can also interpret the output of this network, the network that takes P of Z

given  X  and  gives  you  a  sample  from  the  training  data  similar  to  the  training  data

distribution. And we would like to if we interpret our output again as you know as the Sample

from Gaussian distribution then it leads to a reconstruction loss, we will see how that is done

in the next few slides.

(Refer Slide Time: 8:35)

So  variational  encoders  consist  of  these  3  components;  the  encoder,  decoder  and  the

regularised loss function okay, so this is from the deep learning point of view. So as you saw



earlier, the encoder takes (())(8:46) as input and provides you the parameters of the latent

space distribution, and decoder takes a Sample from the latent space distribution and provides

you with the output  which is  similar  to  do data  in the training  data  ok,  and these 2 are

basically parameterise, the encoder and decoder both are deep neural network right so we can

use them ok, can be convolutional neural networks or just fully connected once, we can use

either of them so typically for images you make sense to use convolutional neural network

ok. And we have a regularised loss function, we will see what that is in order to optimise the

parameters of this neural network.

(Refer Slide Time: 9:33) 

So the VAE architecture, so this is your training data as input so training data samples are

given as input. Q of Z given X is actually represented by a neural network, so this is the Phi

or the parameters of the or the weight parameters or weights of the encoder, right. And it

gives you output Z in this case again slight (())(10:11) it does not exactly, you do not exactly

get Z but you would get the parameters that depends upon X ok, so for every X that you give

as input, you have a corresponding Mu and Sigma coming for it and you have this decoder

which is again the neural network with the data are the again weights or the (())(10:35) of

parameters, weights of that network which takes its samples, so this is Sample using Mu and

Sigma right.

You sample using Mu and Sigma and you get a Z, this is given as input to this neural network

and it provides an output X which is a sample, which is similar to X tilde which is sample

which is similar to X ok. So in this case we have given a particular X as input from which we

have sampled Z right and so we would expect the output X tilde to be the same as X, X tilde



will be same as X that we gave as input over here ok. So this is the VAE architecture and in

order to train this we have a loss function which consist of 2 parts, we will look at what they

are and that ensures that this neural network is consistent in terms of a particular Z giving rise

to a particular sample from the training data ok.

(Refer Slide Time: 11:53)

So the VAE loss function consist of 2 terms ok, so this is your data reconstruction loss is

typical in most networks, and this is your regulariser. So if you look at the regulariser, the

regularised is nothing but the KLD version, so the KLD versions between the distribution that

is the output by the encoder network and your prior model for distribution of Z. So we have

actually in this case in the case of VAEs, both of them are modelled as Gaussian distribution

okay. So the KLD version if you recall defines you how similar two distributions are, if they

are exactly the same then you get 0 ok so that is the optimum value that we get for that

distribution.
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So the sum of these 2 is what you optimise, so let us take a closer look at each one of them.

So as I said earlier, so Q Phi of Z, X is the output of the encoder. So which gives you, in this

case we have modelled them as Gaussian so you will get a Mu in Sigma corresponding to a

Gaussian right. P Theta of Z is another Gaussian right, 0 mean and unit standard deviation

okay, again if you look at the covariance metrics, it is constrained to be diagonal okay, and so

is this one so identity metric. So our prior for Z is basically a standard normal distribution and

we constrain the output to the parameters of the this Posterior distribution Q of Z X which is

output  prior  networks  whose  parameters  are  Phi  are  again  integrated  as  the  mean  and

covariance  metrics  of  the  Gaussian  distribution,  of  course  with  covariance  metrics  they

constrain to be diagonal ok.

Now this is your reconstruction loss, look at it so this is the output of the decoder right, the

output of the decoder is actually an image and the output in this case if you are looking at

image, it is looking to generate images. Now if we assume that this distribution that the if we

interpret the output also as as the mean of the Gaussian distribution then you can again once

again model the output as as the parameters of the Gaussian distribution and the mean is

given by the output of the network characterised by data ok, so if you take the log of that then

you will get, you will end up with the usual least square loss function. On the other hand, if

you are looking at let say binary images wherein the pixel values are 0, 1, then you can also

use binary cross entropy.



Binary cross entropy between your input image where the pixel values are either 1 or 0 and

output of the decoder with values ranging from 0 to 1 which is done by using a Sigma at the

output, then you can interpret the each of the output pixel values as probabilities drawn from

the Gaussian and which we can use either as a if you take a log of that then you again you get

the usual least square loss function. On the other hand if you treat the pixel values as binary

variables themselves and you can still use the cross entropy ok that which comes only binary

distribution ok. So each of them each of these are possible, so we have a combination of two

loss functions, one is the reconstruction loss and the other one corresponds to the constraint

on the output of the encoder making sure that the parameters correspond to that of a standard

normal distribution, so that is the regularisation that we impose ok, so this is from a deep

learning point of view.

Once again this is essential because we can we can say well since you are cosigning it to be

drawn from a standard normal distribution, why do we even need the encoder network right?

So you can  always say I  will  just  draw from Z and then I  will  try  to  reconstruct  some

arbitrary X, so the idea behind doing this is that we want to make sure not all Z will give rise

to the X that we have in our training data. So we specifically want to work with Z, the vectors

that we are now using as hidden representations or latent space representation to correspond

to the data samples in our training data. So we have an encoder network that takes particular

X from our training data distribution and maps it to Z and we try to reconstruct the same X

using the decoder from the Z that we have obtained okay.

Now the loss function to be optimised, the loss person to be optimised has to be done on a

image by image basis, so in the sense there are 2 ways of looking at this; one is just take a

look at this loss function. So once you pass through the, once the encoder has given you a

particular Mu and Sigma, then you can sample a lot of Z values from that using Mu and

Sigma, pass it through the decoder function to reconstruct and of course the expectations

values will be over the all the Z values that you generated for that particular X. Now as I

mentioned earlier, this will become slightly harder to do because you have to sample lots of Z

because not all Z that you sample will correspond to the X that you have at hand.

So to make this thing simpler, so we will have the encoder function so that expectation value

can be done over for the loss function can be done over all the samples in your training data,

so where it works is if you have the training data, let us say many bats or the entire training

dataset, you will pass it through the encoder to obtain Mu and Sigma, we will sample Z from



each of the output corresponding to every X of the encoder and pass it through the decoder to

get the reconstruction loss so that we can do (())(19:24) on that loss function okay. Still one

problem left because the sampling function if I say is not a differentiable function right, you

cannot differentiate the sampling process so there is a worker called the reparameterisation

trick, we will see what that is.

(Refer Slide Time: 19:42)

So just to recall that briefly, this is the image on the left is what we look at, so we have an X,

this is the bunch of X that is the samples from the training data goes through the encoder,

gives you parameters of a Gaussian distribution from which you sample a Z right here, then

you pass it through the decoder which will give you a reconstruction of your input ok. So

then you have some of 2 loss functions, this is what we saw earlier as the data reconstruction

loss and this is to constrain this is the regulariser which makes sure that the parameters that

you are generating from the encoder remain close to the normal distribution.

Now doing it this way so we want to back prop through the entire network all the way, but

that is difficult to do so through the sampling process because the sampling itself is a and

differential function right. So to evaluate this reparameterisation trick what it does is, it uses a

standard trick right so if you have if you have a sample from a standard normal distribution,

you can convert it into a sample from a Gaussian distribution with a particular mean and sand

division that  is  what  is  exactly  the here.  So everything else remains  the same,  the usual

encoder X goes to the encoder to give you Mu and Sigma but you Sample Epsilon, for every

X you will Sample Epsilon from standard normal distribution right, and then you will do the



trick of multiplying by Sigma and adding Mu to it right and that is given as input to the

decoder.

Now back prop can go through the entire network in order to update all the ways okay, since

this particular since this process of assembling Sigma from (())(21:34) do not depend on the

parameters of your either the decoder or the encoder ok. So once you have trained to the

entire dataset, what does it we do with it? How do we let us say how do we generate samples?

It is actually very simple, all you do is you Sample from the standard normal distribution.

Since we have constrained the encoder or regularise the encoder to that way, you can sample

some Z from the standard normal  distribution.  You can get rid of the encoders,  you can

discard this, now you have got Z you know how to Sample Z from, and you just have to put Z

through the decoder ok and it will provide you Sample.

Now how this, we have already looked at auto encoders so the similarities the following, both

of them have an encoder and a decoder we saw that, so we take that the classical auto encoder

takes as input your training data samples and successive hidden layers there is a bottleneck

layer which is treated as ideal representation and that hidden representation is then mapped

back to your input, so which is exactly what happens here. We have this Q which maps X to

Z that is the bottleneck layer in your auto encoder and then you have the decoder which takes

the input in your representation and provides you with the output ok, so this structure is

called as auto encoder, otherwise the principles are different.

The advantage behind doing it this way that is making the output of the encoder (())(23:27)

we are not treating it as some deterministic value there but rather treating it as the parameters

of the distribution from which that is to be drawn. Now this provides some interesting results

because  it  provides  meaningful  or  a  structured  Z  representation  in  the  sense  that  if  you

sample close to the Z values that are estimated for trained data X, you will get similar X right.

And if you systematically sample Z over the range of Z values that are being generated using

this network, then you can see that we have mapped to some attributes in the images that we

are using ok.

It will not be exact but it gives you a very smooth transient, as you change Z gradually, the

images will also transient smoothly okay. The structure of the images can be captured in the

distribution of Z rather than providing some arbitrary hidden space representation or latent

space representation, you have a very structured Z that comes out of this process and that is



made  possible  by  treating  the  output  of  the  encoder  as  (())(24:37)  rather  than  as  a

deterministic hidden layer in auto encoders okay.
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Another point is that the loss function that we derived from the point of view of deep neural

networks if we go back to what we saw earlier, we have sum of these 2 terms right so this we

wrote down as data reconstruction loss plus a regulariser, so that is from a deep learning

viewpoint  however,  it  is  actually  possible  to  derive  this  loss  function  from probabilistic

arguments. So starting from trying to maximise your the likelihood of the data, it is possible

to derive this particular loss function to be optimised, so this is a much more principled way

of creating a generative model.

(Refer Slide Time: 25:42)

The innovation here is that the output of the generative model that is this P of Z given X,

those are the parameters of the distribution, that has been replaced by neural network. So the



parameters of P of Z given X this PDF has been replaced with neural network which basically

regresses your Mu and Sigma of your P of Z, X. So Mu and Sigma corresponding to be of Z,

X are regressed by your neural networks. Similarly the process of mapping from Z which

your Sample from P of Z provides to data, the data on which we actually want to get, the

generative data is also accomplished using a neural network.

This  provides  you  get  advantage  because  neural  networks  can  pretty  much  learn  very

complicated functions from higher dimensional space because the inputs to for instance if

you take the input to the encoder, let us say it is a picture, it is an image, it is a 100 cross is

100 image that is like dimension of 10,000 right. So your 10,000 input dimensions can be

easily  handled  by a  neural  network,  it  provides  a  structure  to  do  that,  it  is  a  non-linear

function mapping. Similarly from mapping from Z to X is again this function that is denoted

here that is also mainly possible by the neural network, so the F here represents the neural

network, the P and Q are the probability distributions ok.

So we have parameterised the probability distribution as Gaussian and we have estimated the

parameters  of  the  Gaussian  using  neural  networks.  So  this  is  the  strong  point  of  this

variational auto encoder in addition to having a principled way of obtaining the loss function,

which means that the Z that you generate from your training data have are meaningful, this is

not possible in let us using a classical auto encoder because the only thing you can do is

possibly make its parts to have a good representation, but in this case varying Z smoothly as

many people have shown which will refer to later, varying Z smoothly can give you variation

of your input ok, so that is the advantage of using variational auto encoder.
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So to summarise, the encoder is a neural network here then coder is a neural network that

transforms the input  image into the parameters  of the Gaussian distribution  ok.  And this

Gaussian distribution corresponds to the latent space,  so we have a mean and covariance

corresponding to the latent representation and we regularise it by making it close to the unit

normal distribution that is how we regularise the network. Now we randomly sample from

the latent distribution and we assume that dataset generates the input image that the input to

the encoder or say input image is the input to the encoder.

Then we spend that Z through the decoder which is again another neural network, it is a

function mapping which transforms that Z into the input image ok. And we optimise, in order

to optimise we do the reconstruction loss that is make the output of the decoder as close as

possible to the input image to the encoder. So during this process over your given input data

trains your decoder appropriately, so once the training is done you can discard the encoder if

you want and just sample from unit standard unit normal distribution, pass it through the

decoder and obtaining samples of data that you want to generate.


