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Hello and welcome back, in this video look at generating adversarial networks, these are class

generative models which do not explicitly model the data distribution, but rather provides a

sample for it and sampling is performed using a deep neural network, the neural network

which actually provides a samples, takes as input a random noise vector and then maps into a

sample of the model distribution. 

So let us say we have given, you are given training data right, V data of X, which is in the

provided based on the samples provided, so X1 where I is 1 to N, what we want to do is to

model some provide a, to want to do is determine this model, P model of X, so that it is an a

good approximation of P data, the true distribution okay, so this period of X, once again, we

do not actually haves access to all the data that is possible, so we only samples from P data of

X and we want to determine some P model, which basically the probability distribution of X.

A model for that, so that we can sample from it, now in this case we do not explicitly model,

so in the sense it is not a parametric model, but rather this is accomplished using a deep

neural network, neural network actually generates a sample from the model distributions, so

we will see how this is done.
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The generative adversarial  networks, framework consists of two neural networks, one the

generator and the discriminator, the function of the generator is to take as input, a random

noise vector and transform it into a sample from the model distribution and the discriminators

job is to, is actually act as a classifier wherein it tries to determine if its input data X came

from  the  generator,  we  call  them  as  fake  samples  or  was  it  from  the  actual  training

distribution because of the real samples okay.

It is call adversarial because the generator is constantly trying to fool the discriminator into

believing  that,  into  making  the  decision  that  input  generated  by  it  is  from  the  training

distribution,  while  the  discriminator  is  constantly  lying  to  learn  the  (())(2:59),  so  that  it

always determine whether, it is call an adversarial network because it has these two networks

generators and discriminators trying to work against each other like as I mentioned earlier,

the  generator  constantly  trying  to  generate  samples  that  will  fool  the  discriminator  into

classifying it as coming from the training data distribution, so in that process the weights of

the generator learns a transformation which enables one to convert the random noise input

vector into a sample from the model distribution.
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So just  to  have illustration  of  what  we discussed,  so the generator  G takes  as input,  the

generator G takes as input a random noise vector also referred or denoted by Z, also referred

to as let an space, these random noise vector is then given the, which access input to the

generator  G,  which  then  outputs  some  samples,  generated  samples  of  the,  which  are

hopefully, similar to the training data distribution.

The discriminatory D takes as input you are trading data, so again, this are samples or nothing

but your training data, which are made available to you, so, for instance, if you are interested

in generating faces, then you would have a database, faces of different people and that would

be the input of discriminators, so it would be a general-purpose algorithm, it has a specific to

some certain task, so the training data. It takes as input trading data, which are labelled as real

and the generated fake samples again they are labelled as fakes or we can say this is zero

label and this is the one label.

The  discriminator  alternatively  tries  to,  takes  as  the  input  the  samples,  the  training  data

samples as well as the generated samples and outputs an error function, so basically it is the

output of the discriminator, which are basically output say probability of particular sample

being real or fake ranging from 0 to 1, now this output is what provides the signal, or the

error signal to train the weights of the generator as well as the discriminator.
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So how is that done? This problem is formulated as a zero-sum game, so to speak, because

the generators, if you denoted by J of, J subscribe G as the cost function of the generator, then

it is basically the negative of the cost function of the discriminator which is denoted as J

subscript D, so the cost function the generator is what is given here basically and this also

referred  to  as  value  function,  it  is  actually  a  function  of  two  sets  of  parameters,  one

corresponding to the discriminator and other corresponding to the generator.

So this  is  optimized  alternatively, there  is  an  inner  and outer  loop,  so the  inner  loop is

maximizing the this value function with respect to the discriminator network parameters, the

outer  loop  is  minimizing  this  again,  the  same  objective  function  with  respect  to  the

parameters of the generator network, so let us take a closer look at the cost function itself,

this is the first is log D of X, which is nothing but the, let us take the closer look at this cost

function. 

So if you look at this cost function, which is expectation of log D of X plus the expectation

over Z log of 1 minus D of, so what this means is that will calculate log D of X with respect

to  the trading data  samples  and you will  calculate  this  term with respect  to  the samples

generated from Z. Okay, so this is very similar to the binary cross center P assuming that

there is an equal number of generated images and equal number of trading data samples okay.

So this we will see how this cost function make sense, minimizing this or maximizing this

cost function make sense in the context of the generative adversarial network, so here, DG of

Z is basically the output of the discriminator when the generated images are or given as input,



so D of X goes from 0 to 1 basically you can think of it as a probability of this particular

input  sample  belonging,  either  being  real  or  fake  and  similarly  and using  the  generated

samples it would be DG of Z, which again go-between 0 to 1 okay.
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So if  you look at  this  cost function,  so when we start  training,  so if  you look at  it,  the

discriminator, ideally the output of discriminator should be 1, whenever X comes from the

training data distribution and the output of the discriminator be 0 whenever the input comes

from the generator, so initially when the discriminator is not sufficiently well-trained, the

weights of the discriminator or not are still random, then let us look at a particular case, this

case wherein you have real data here and some the generated data which are given as input,

what is shown here in this black hyphenated lines is basically the decision boundary given by

the discriminator.

So  here  there  is  one  misclassification  real  data,  here  I  write  here  and  there  is  one

misclassification of generated data. Okay, so everything to the left this line, left of this line is

basically class 0 everything to the, sorry the everything to the left of this line is class I and

everything to the right is class 0, now when the discriminator misclassifies, so which is the D

of X is 0, when X comes from the training data, ideally the output should be 1 but instead it is

a 0 and you can see that log D of X becomes a very large negative number right.

Similarly, when you take the database comes from the generator, ideally the output should be

0 but then if this misclassification then once again D of G of Z is close to 1 which means that



log of 1 minus that becomes a very large negative number correct, so this is the case when the

discriminator is not performing optimally.
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On the other hand, let  say it  is  trained very well  and you see that  the samples are  have

correctly classified, the same input real data, as well as fake data here, you see that this is the

decision boundary right here and everything above is class I, everything below is class 0

which in the case decision boundary is correct, then which is the D of X close to 1, then log D

of X is closed 0, similarly D of G of set is close to 0, then log 1 minus that is again close to 0.

So, that now you are cost function varies from a very large negative number minus infinity to
a close to positive number, which is like in this case is 0. Okay, so maximizing this cost
function  makes  sense,  so  that  maximizing  this  will  lead  to  the  discriminator  performing
optimally.
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Similarly when you try to look at minimizing the same value function or cost function with

respect to the parameters of the generative network, now if you take the first term, it does not

have any parameters of the generator networks, so we will not consider that, so will only look

at this  particular  term here, so minimizing this term, what does it  mean? Minimizing the

likelihood of the discriminator, classifying the fake samples as fake, basically that is what we

are trying to do here with this cost function.

So this is minimizing the cost of correctly classifying G as 0. Okay, however it turns out that

this cost function saturates very quickly. Okay, because initially when the generated images

of very poor quality, then the discriminator has no problems figuring them out as belonging to

class 0 okay, so then what happens is that the output of the, the output saturates, so if you take

the derivative which is what you raise to the signal that we back propagate to the network,

derivative become 0, so there is not much to back prop okay.
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So instead it is placed by maximum of log DG of Z, so what this does is to maximize the

error  of  the  discriminated  network,  maximize  the  error  in  the  sense  that,  it  incorrectly

classifies D of G of Z as 1, instead of 0, so ideally what we are trying to do is to force D of G

of Z to be close to 1 rather than it being close to 0. Okay, that is what this cost function does.

So maximizing the error of your discriminating network is what this cost function does and

this provides, this is heuristic and it actually makes it better for training the neural network,

so we can just check that is, so once again your real data and fake data being fed into the

discriminator, so when the network, discriminator network correctly classifies the output of

generator as being close to 0, then it becomes a very large negative number, then log of D of

G of Z is a very large negative number.

On the other hand, when, let say the generator has progress to a point where he is generating,

very realistic examples, in that case, let say the discriminator comes incorrectly in this case

classifies the output from the generator as belonging to class I, then you know that log of the

of G of Z becomes close to 0. Okay, so then again, once again maximizing this cost function

with respect to the parameters of the generator network leads to the generator managing to

output samples which are very close to the training get a distribution okay.
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So let us look at this learning process in the terms of one deed distribution, this is again from

the paper given at recited at the bottom, so let us we have this data distribution in black

shown  here  and  let  say  this  is  the  model  distribution  from  which,  which  learn  by  the

generated network and this is the, the blue line is the output of the, this is the discriminator

response. Okay, we can take this as decision boundary, so initially where the training is, not

initially  when  the  training  is  not  great  will  see  that  there  is  a  misclassification  by  the

discriminator okay.

So the misclassification we can judge by seeing that all points to one side of the discriminator

decision boundary is classified as real, have poorly points on the other side, let say this side is

classified as fake okay, so then after updating the discriminator so you do a several epochs

discriminator network and it gave rise to a decision boundary which is much better right now,

so which  is  able  to  correctly  classified  samples  to  some extent  from the  real  versus  the

generators output okay.

So then what we do is in this case just to have explain further, so said in this X here, this is

looking at one-day problem, so this X, this is Z, this is the random vector, this is the space

from which we sample the random noise vector, so the generated network maps this to points

in X, so X is the data, it wants to data axis and Y axis here, here is the probability okay, here

is the probability density function that is what we are looking at.

So Z is mapped to X by generator and it gave raise to this green line. Okay, which is what we

are trying to change, so after updating the blue line, the blue dotted line is the discriminator



response, it is getting better and discriminating between the data distribution and the model

distribution, however, another epoch of the updating the generated network leads to the green

distribution  moving  closer  to  the  dotted  black  distribution,  which  is  basically  the  model

distribution is correctly approximating the two data distribution and once training has been

and once when both the discriminator and the generator have being optimally train.

Then  we  get  to  a  point  wherein  the  green  and  the  black  dots  are  coincidental  and  the

discriminator is unable to clearly say which is what, so since that output of the discriminator

is always 0.5, ways it is not clear whether the data belongs to the trading distribution, trading

data distribution or it came from the generator okay, so this is what the process is, so you

alternatively  train  the  discriminator  and  the  generator  to  point  where  as  an  equilibrium

wherein the discriminator is not able to distinguish between the samples coming from the

training  data  distribution,  or  whether  it  is  coming  from  the  generator  distribution,  the

distribution approximate by the generator.
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So just to work you do, this is again from the paper and just to work you through the steps

involved in the algorithm, so you sample a mini batch of noise sample, so remember the input

to the generator or this random noise vectors is of a uniform noise or Gaussian noise, you

sample M of them, M is your mini batch size and you also sample a mini batch of M trading

data okay.

So again once we sample of course we run it to a generator two, give outputs in the form of

the data, so then you update the discriminator by ascending on its stochastic gradient, so we



saw that we maximize the probability of the discriminator when we are trying to train it this

cost function and once that is done this again for K types, so this is that loop we are in for K

steps and once again we sample a mini batch of M from the noise prior, this is called the

noise prior, so this distribution from which you sample Z is called the noise prior and then

you update the weights of the generator again doing.

In this case the original cost function is row of 1 minus that, remember that we replace that

by now of D of G of Z, so we have to do gradient ascent on it actually, not gradient descent,

so this is gradient ascent, to maximize this cost function, so this alternates, so typically you

will do 1 step of are several 1 or 2 steps of the discriminator and then go back to the generator

and train its  weights okay, so in this particular  construct,  this  gradient construct both the

discriminator  and the generator  are  neural  networks,  so usually  stochastic  the mini  batch

gradient  descent  is  used  for  updating  the  weights  of  the  generator  as  whereas  the

discriminator.
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So, will look at one very popular implementation of this GAN its called DCGAN or deep

convolutional generative adversarial  network, so this is one of the first  work inside over,

incited here, it is one of the first publications to use a deep convolutional network to generate

actual images okay, so the original paper which talks about GANs, used MNIST and it did

not use such the deep convolutional networks okay.

So there are some heuristics that they, the authors figure out some of them are listed here, so

they replaced polling layers in deep convolutional network with strided convolutions okay, in



the discriminator you have strided convolutions instead of Max polling and in the generator

you have transposed convolutions, remember that we start with a random noise vector and we

have to actually generate images, so you need to have transposed convolutions.

Use batch normalization in both the generator and the discriminator, they removed most of

the fully connected layers and the use ReLU activation in generator for all layers accept the

output, which uses a tan hyperbolic and use leakyReLU for the discriminator for all layers,

this is particular a heuristic seem to work very well for them, I urge you to read that paper

where they have, able to generate images that are not part of the training distribution, but still

look very realistic okay.
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So we will just look at the architecture quickly, so we start with Z, you sample Z from a

distribution about 100 points or 100 dimensions and you have to re-project it to a volume of

size 1024 feature maps of size 4+4 and then you use strided convolution, in this case they call

it  factionalist  strided  convolution  or  transposed  convolutions  to  increase  the  size  of  the

feature maps to 8 x 8 at the same time reducing the number of feature maps, this is a typical

thing that is seems throughout the networks, so in the next layer you have 16 x 16 future

maps with 256 feature maps in total.

Than 128 x 128 feature maps with of size 32 x 32 and in the end the output is a RGB image

right, that is what we interpret the output as the basically 3 channels of size 64 x 64 okay, so

this is the generator network. Okay, so the discriminator is basically the its mirror image

basically, so you start off with 64 x 64 x 3 and then you go back to this size of 128 x 32 x 32,



so on and so forth, so basically what we see in this sequence you go back the same way the

okay, all right, so that is what you have here, so all of this comes here and the second comes

there, so on and so forth and output is a probability of the image being real or fake okay,

depending on what your input is right.

So there are some interesting things in this paper, so basically if you remember that we have

to samples Z from a distribution and for generating new images we keep sampling Z, so what

they require was they are able to see a continuous transformation of images as you keep

changing Z on 1 axis, so the generator was able to meaningfully interpreted between Z, so the

paper has some very excellent examples, so you can go and look at them.
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So the idea is again, just to summarize you have dataset of training samples, we will state at

using the M is dataset and we have discriminator which is a deep neural network in this case,

we have sampling, noise DCGANs paper is 100 dimensions and in the generator takes that

are important and outputs MNIST digits in this case, we are just illustrating it with MNIST

digits, which is again given as input or discriminator which has a loss function based on

predicting whether the, the inputs comes from the training data or whether they are by the

output of the generator.

So what is important is that of course you will not be surprised if the generator provides a

sound as output samples similar to the one so same as the ones in the training data, however,

what is observed most of the GANs-based implementation of the generative models is that

very  consistently  the output  images  which  are  similar, but  not  the same as  the  ones  the



training distribution, these are completely the new images which still makes sense as images

and they are able to also interpret meaningfully between the Z values, that is also a very

important point to note.

So by constantly, by continuously changing Z you can obtain a sequence of transformational

of images which are again meaningful okay, so this property can now has, they have a lot of

work has been done in this area right now, I initially, even the paper came out 2014, there was

problems in generating larger images, so typically the outputs were restricted to size 64 x 64,

so on, however, over time, right now there is a something called big GANs which are, which

is able to give you very large size images at very higher resolution.

However, of course, the memory required MNIST and the computational requirements of

course go up.  Okay, so this  concludes  our  session on GANs, we will  also look at  some

applications in medically imaging as to what this generative adversarial networks are used

for,  in  the  medical  imaging  domain,  however  just  briefly  GANs  have  wide  variety  of

applications, for instance especially very at least in the context of medically images, there are

situations wherein there is not too much data.

So, in which case you can do the same as supervised learning using GANs, so you can use

GANs to generate images like that in your training data set. Okay and all the while training

the  discriminator  for  a  particular  task  right,  so  in  this  case,  the  discriminator  learns  to

distinguish  between  the  real  and  fake  images  and  in  the  processes,  you  hope  that  the

discriminator has learned the an underlying representational of your data, which then you can

find you, maybe a little bit more data for us, specific segmentation, classification task.

So the context of semi-supervised learning especially for medically images analyses, GANs

have wide application, so these GANs can also be used as conditional GANs, in the sense that

you can have an additional input, see for both the discriminator and the generator, so that the

outputs of both are conditional on the that access input.

So one such application is image translation right, especially, so let say you have two sets of

applications, so there are some images which are widely available, let say images of a certain

anatomy are widely available in a particular imaging modality, let say MR images are widely

available and CT images are not, suppose you have trained a very deep network for MR

images right, now you have CT images of the lever but you do not have enough data to train a

classifier.
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So what  you  do is  to  have  a  GANs,  like  network  to  translate,  so  GANs  have  a  lot  of

applications,  some  of  these  applications  are  summarized  in  this  website,  it  is  a  very

interesting  blog,  I  urge  you  to  go,  look at  it,  however  in  the  context  of  medical  image

analysis, there are, this I has very crucial role to play, especially in the context of semi-super

based learning, suppose there is a positive of training data, in fact, label training data, then

you can use GANs to train a discriminator which learns underlying structure of the data and

then maybe find unit with whatever little data is available right.

Because for training the GANs, you do not probably do not need or label data, just to have

access to a lot of images, let say of a particular variety, of a particular anatomy are particular

disease and then you can train GANs with it, but since you lack the labels he does not, it is

hard to train a deep classifier from scratch, however, once you train a generative adversarial

network to generate images for a certain anatomy, then you can take the discriminator and

find unit and hopefully it will be a good classifier, so that just one very nice application for

GANs.

And there are other fields, like in the case of image translation that there are lot of interest,

especially since in the field of medical imaging there are lots of imaging techniques, so MRI,

CT, etc and in some anatomy and some disease cases and are more images available with a

particular scan, let say there are more MR images of the brain available, or let say more MR

images of the, more CT images of lever are available and there is more trading data available,

label training data available for CT of the lever other than MR of the lever, then it is could be

convey into setup a GANs that work, which can translate CT to MR images, so that you can



label using any classifier you are created for the MR and then translate it back to the CT

images.

Of course these are research problems and with the advent of this GANs network, this things

are  made possible,  the  recent  pass  there  are  being  7  developments  something  called  big

GANs as  come  up  which  is  able  to  generate  larger  images  because  most  of  the  earlier

networks following 2014, they have been only able to generate a very small size images, in

the sense 64 x 64 or up to 128 x 128 and the resolution was not great either. Okay, so with

more progress made in this field, a lot of the interesting problems can be tackled, especially

in the field of medical image analysis.


