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So that is what we have done the manage to project our data which is of two column which

contains  heights  and  cigarettes  per  day  into  a  single  axis,  so  you  can  think  of  it  as  some

combination of height and cigarettes, so as I mentioned earlier you can also think of it as rotation

of your axis, so I am sure if you have at some point in your college or school you must seen this

when you have axis X Y and then you rotated by an angle.

Let us say theta to get a new X prime and Y prime it would done be possible to express X prime

and Y prime each of them as combination of X and Y, so this you must have seen at some point

in  your high school algebra and it  is,  so this  is  accomplished of something similar  it  is  not

exactly attributing but it is more complicated transformation involving both this features heights

and cigarettes per day.
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So finally that is what we have we create a single feature which is a combination of height and

cigarettes and this process of reducing the dimensionality of the data is what we called principal

component analysis.
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So mathematically is what we can state this at have given an N-dimensional data set X or idea is

to find and N by K matrix U, so that when we apply U transpose X, we do this operation U

transpose X and we get this new data Y which has reduce dimension it has dimension K which is



less then N, so that is what this given here in this part following operation, that is precisely what

we going to do if you want to put in terms of linear algebra matrix operation

(Refer Slide Time: 01:57)

Now let us consider this that I said this has two features X1 and X2, there is X1 and X2 visually

we can see that you know that lot of the information is along one axis, it is along the axis here

very black arrow, so which mean that this axis at the maximum variances if you can construct

this axis maximum variances so we have an another axis which is in this case it is orthogonal to

this as 90 degree, so orthogonal to this current axis I have drawn an orthogonal to that axis

variation is very small or the variances the other axis is very small so if project your data along

this axis one of the first true the axis that we first true then we could be able capture most of the

information because the variances is height in direction.

And the other direction that look we consider is the direction orthogonal to the axis that we are

presented and that the variation along the direction is much lower so this the idea behind doing

principle component analysis, so what we need for that we need two things we need the direction

of this axis in this direction we need this vector this vector we need to know and we need to

know the length of the vector because the length of the vector helps us to determine whether the

variances is high in this direction or not the larger the length the more the variances along the

direction and similarly we need to know the length of the direction of the other vector, so that is

what principal component analysis help this equation.
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So  how do  we  do  this  accomplished  it  we  would  not  go  through  the  actual  algorithm  for

determining this but what we can do show the plot is process thus so this principal component

analysis accomplished using what is known as single value decomposition there is stage there is

usually called single value decomposition not single value it is a matrix factorization method that

normally use for principle component analysis this is not required a square data set,  so your

matrix not be a square matrix and it is used in this python package Scikit-learn for PCA even

MATLAB is a command SPD which help you to similar identity decomposition for mount square

matrix.

So these has a five in this case M by N matrix M is five, M rows three column, so this is the

number of features, so what singular value decomposition thus is to factories into a product of

three metrics this is called the left singular vector so a right singular vector and this is called the

singular value matrix, so if you do this on a square matrix, so what will get or the singular value

matrix is nothing but the eigenvalues is the diagonal matrix of eigenvalue and the left and right

singular vector nothing but the eigen matrix of eigenvectors, so if you have N in this case five

cross three of matrix we have in this case five data points we have three feature that what this

three features we want to reduce it.

So we get this U matrix which is a left singular vector which is of size M cross M five cross five

the singular value matrix the singular value matrix which is of actually diagonal matrix so it is



only  case  the  this  two dimensions  have  zero,  so  we these  three  singular  values  and the  V

transpose has dimensions N cross N which is three cross three, so this is the output of the S video

algorithm and what so how do we decide you know how do we actually reduce a dimension

right.
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Again the idea is the visually we saw in that data set there are one direction along which the

variances of maximum however when the number of dimension increases hard to be visualize so

then we the visualization is done using this particular matrix which is the singular value matrix if

you see that then these rows are already relevant because they do not correspond to any useful

similar values so the least singular value corresponds to this, so we can drop the row and column

corresponding to this singular value which corresponds to this particular column here and this

row here in the V matrix.

So again we can drop these also because they do not correspond to any useful direction, so that

way you get a V matrix which can be we can project to two dimension, so we have reduce the

number of feature from three to two by throwing out one direction corresponding to the least

singular value, so this is the truncated SVD that we used for dimensionality reduction, so we can

so in this what we have to do is we can throughout this rows and columns and then actually do

the  multiplication  to  get  a  correct  form of  your  data  matrix  so  remember  the  each  column

correspond to features.



So that is how the data point should be arranged one more information before you do PCA is that

they all have to be zero centered so each column has to be subtracted mean subtracted, so that the

mean of this is zero the one of the required from doing a PCA, so this is one of the most often

use technique for dimensionality reduction, it says that this is the pre-processing step for any

machine learning algorithm classification regression you now name it and even if you want to do

deep learning with images you can actually do this, except that now you have to rash up the

images that two column and rows depending and how you arrange the data.

So that is you know this is like the work cost technique and it has proven to shown to improve

performance in many algorithms, because what it does it is removes the unwanted feature, so by

re-projecting your data into a new axis it remove unwanted features and only keep those feature

which are relevant my themselves having a maximum various, so some key points remember I

would like to retreat here, the idea is that we have this data set here all this red back data points

represent the two dimensional data X1 and X2 in which is 2D the idea is to find a new axis to

represent this data but the condition for the new axis then still for orthogonal axis is that we are

still in on orthogonal axis that to they are orthogonal axis.

So that is enforced by the algorithm idea is we find this the axis corresponding to the most

variation in the data and then find an another axis corresponding to perpendicular to it and then

look at the variation and direction so and on so forth, so the principal axis or orthogonal very

important and the main the axis we want to keep have maximum variant along that direction this

are the key point that the you have to remember and the way this is accomplished by doing this

SPD and since there are in the case of more than two and three dimensions the best way to figure

out which axis is the most variant is look at the singular value matrix.

The singular value matrix the you can keep the first case significant terms so that you can project

such the K less than N, where N is the original dimensional T of your data, here we conclude

with principal component analysis again there are lots of resources on the web regarding the

actual algorithm itself we will post some on the discussion for an as soon as only open announce

for up.


