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Hello and welcome back so in this video we will look at what we mean by maximum likelihood

estimation, so you are all familiar with the linear regression model, so we have bunch of data

points Y i and we have the corresponding features X i, so typically we formulate this model W

transpose X, again X i can be multi-dimensional or we just be single variable but that does not

matter in this case, so our model that what are try to fit typically is when you so look at linear

regression we looked at the least squares loss function the loss function is nothing but you have

summation over M data points square then we have D.

So that was over model and we took the derivative of this model we use gradient descent to

estimate W, so where do get this wise in that we use least squares, so why is it power to we have

looked at L1 and L2 norms and all that but still why is this the best way to do it there are many

ways of approaching this one way of doing figuring out this least squares loss function is by

looking at the probabilistic our perspective.
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So one if we will just reduce we will consider individual errors, so for instance we will define

this a variable epsilon I as I square the square S that is the error, let me just write, so this error

might be due to noise in our measurement and missing data may some features are missing this

could be the error due to those concept, so because some X i might be missing for a particular

data point and maybe there is an error in measuring X i as well as measuring the Y i, so typically

one assumption people about that this is that these are Gaussian distributed, so what does that

means, means that the probability of observing a particular epsilon square, we assume that it is

given by a Gaussian distributions with zero mean, so once you make this assumption then we can

rewrite our problem.
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So because we know what sum square is, so we can write this as P of, so we have this probability

of P, so we can rewrite this as probability of a P of Y i given X i and W, so then we can just say,

so will that side exponent because then it is sassier to minus I might have missed out a negative

sign here, so this is our model so the just spray we are just plugged in out model here and then

we will just read to pretend this probability S, Y i given X i W so the idea behind likelihood is to

maximize this likelihood.

So which means that if you maximize that good which means maximize this expression on the

right with respect to X i and W another way of looking at it is we can also maximize any other

function of P in this case if you take the negative log of P then I am going to ignore some of the

additive factor here you will get if you take the log of the exponent and then the negative sign

you will get Y i minus quite again I have just written it for one data point, so that suppose your

training  data consist  of capital  or small  m data point  which we saw then it  will  be just  the

summation you know why that happens is because if you want to maximize the probability of

observing this data set.

Assuming that they are in divided IID then what we get is the probability of the data set is the

product of the probabilities of the individual data, so this will be product of as M such terms M

terms so for each term this and why I times Y i minus W transpose X i, so but if you, so if you do

actually calculate the probability of the entire data set is a product over this each of the data



points, so and we take a log of this should get a summation you said this is our least squares cost

function.

So I have just not done the step where I do the product but that should something you should be

able  to  do  in  other  way  of  looking  at  it  this  you if  you assume  that  our  data  is  Gaussian

distributed what we are modeling here is the mean if you remember the form of the Gaussian

distribution then the Gaussian distribution form as exponential I am just going to use different

variable but that should not throw you off X minus mu by sigma squared, so this is the mean and

this is variance, so this is what we were what we refer to as the maximum likelihood estimate.

So when you do the least square cost function we are assuming that the errors are Gaussian

distributer or basically we are trying to model the mean using this W transpose X by mean in the

sense of for every measurement on an average, so you can think of it that way and we are trying

to estimate this parameter assuming the Gaussian distribution and when we try to increase the

likelihood of observing the data given the parameters, which way what we are trying to estimate

then we end up with the least squares loss function of course if you we can also show that for

classification problems at least for the two class classification problem if we start off with the

Bernoulli distribution.

We can end up with the log loss or the binary cross entropy cost function which is pretty much

same way, we can do that are pretty much the same way, so that see an introductory look at the

maximum likelihood estimate if time permits either this week or in the subsequent weeks couple

of weeks left we will look at some the maximum a posteriori estimate where basically we will be

using the Bayes rule and calculating a prior, so we use base we incorporate a prior, so what we

calculate here so this we saw that is known as the likelihood of the data

So we incorporate a prior and prior times likely to give you the posterior probability that is what

we usually, so if  we take  that  one step further  do a  full  Bayesian analysis  it  is  called  base

integration time permitting we will address these two topics in the next couple of weeks which

basically 11 and 12 weeks will be able to address these topics thank you.


