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Hello and welcome back in this video we will look at the naive based classifier which is

another surprised learning paradigm
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So all the slides are courtesy of Intel software and we would be using the have such.
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So we will start off with some probability basics some of these would have been covered by

in some of previous videos but just for the sake of some continuity, so we use Venn diagrams

to denote the space of events X, so the probability of event X is given by P of X which is the

circle highlighted in yellow and we have another event Y which is again given by the Venn

diagram circle right here, here and again highlighted in yellow.

So we have two events X and Y the joint probability of their occurrence is denoted by P of X

comma Y and of course the single even probabilities are P of X and P of Y respectively again

here in the Venn diagram it is the region of intersection. The conditional probability again is

given P of X given Y is basically the region here if you go back and we see that it is the parts

of X that are also in Y.

So that denotes the conditional probability P of X given Y what is the probability that event X

occurs given that Y is occurred? Similarly we can define conditional probability P of Y given

X  ok.  So  the  joint  and  conditional  probabilities  are  related  to  each  other  so  the  joint

probability P of X comma Y is the conditional probability P of Y given X times P of X or

equivalently P of X given Y times P of Y, this relationship you should have seen before.
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So given this rule we can then equate P of Y given give X times P of X is the same as P of X

given  Y times  P  of  Y, so  that  is  the  joint  conditional  (prob)  conditional  and  how  the

conditional and joint probabilities are related, ok. So if you invert the probability so if you

can make use of this relationship right here and if you can bring the P of X to the numerator

on the denominator on the right hand side, so we get this relation is P of Y given X the

conditional probability of Y given X in terms of conditional probability X given Y and the

individual probabilities X and Y, ok.

Similarly then the denominator P of X can also be derived from by marginalizing the joint

probability over some event Z ok, so P of X is submission over Z emission over the joint of

the event set P of X joint probability of P of X comma Z or also be written as conditional

probability P of X given a Z times P of Z and of course we marginalize over Z which is a

submission over set, here we are to given choose Z such that they are (itse) we can choose

that in terms of a mutually exclusive of possibilities.

So for instance if you are looking at treatment a diagnostic test we can say Z is the event that

test is positive and test is negative ok, so two options in Z test is positive and test is negative

and X is the basically the if you can think of X as the event that you have the disease ok. So

that way you can make a individual choice of Z and you can marginalize over Z to get the

probability P of X in the denominator, ok.
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So this relationship that you have seen so far is the Bayes theorem which are you should have

been introduced to where the conditional probability P of Y given X is written in terms of P

of  X given Y and the  individual  probabilities  P of  Y and X,  ok.  So this  is  this  can  be

interpreted in the context of if you are you know surprise unsupervised learning or supervised

learning  this  specifically  in  supervised  learning  this  P of  Y given  X is  referred  to  as  a

posterior probability P of x given Y is the likelihood P of Y is the prior and the denominator is

known as the evidence, ok. 

So typically this is the one that is a very difficult to calculate because we see that it involves

submission  over  marginalizing  over  another  variable  that  typically  turns  out  to  be  an

intractable calculation in most cases, ok. So there are ways of avoiding this and it is what we

will see later on at least for the name Bayes we will see why we can avoid this, ok. So in the

context of whatever we have seen so far I think I might have mentioned when we talked

about probability distribution the idea of likelihood ok, so where we calculate likelihood of

obtaining data that is exactly here right there ok and later on and we looked at when we get to

look at map maximum if you are sure your Bayesian regression we will once again revisit

these concepts, ok. 
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So like you mentioned earlier calculating this denominator is the difficult task and most of

them they are not we try to not calculate it and in fact we will just ignore it as some constant

in most problems and so this whatever you calculate as posterior it will not exactly be a

probability you might have to normally it is not normalized, so this is the difficult thing to

calculate and we try to get over this calculation in most problems that we encounter, ok.
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So  what  we  do  now  is  we  will  in  the  context  of  I  know  learning  supervised  learning

classification we will rewrite the Bayes rule and see how we can be used for classifying, so

the naive Bayes classifier that is how it draws it is name from. So we replace Y with the class

label C, ok (())(06:07) the class label C and of course this is again Bayes rule for that, for that



class of course like I mentioned earlier  we have not calculating the evidence in this case

because it will involve or sum which is difficult to calculate, ok.

So the P of Y is P of X is something we are not taking into account here we will see later

because we see that what you are done here is we are trying to calculate P of C given X, so

the  probability  of  the  class  given  X  so  the  class  is  basically  you  know  if  you  have  a

classification problem it will be multi class or binary class problems feature is basically a re

input data points training data.

So the probability of class given X is basically your classification right that is we are trying to

classify the classify based on input feature X, so what we are (cal) so this P of C given X so if

you have three classes we can write 3 i, 3 such expressions so C 1, C 2 and C 3 and in each of

them the denominator is going to be a same P of X the is going to be the same, so when you

are comparing them this code the output P of C given X up to a multi same multiplicative

constant we can compare them, so we do not actually have to explicitly calculate P of X right.
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So given this based on Bayes rule we have this expression P of C given X is P of X given C

times P R C we are ignoring P of X because it is the same for all classes alright, so what the

idea is we have to calculate, evaluate this for P of C 1, C 2 let us say a 2 class problem and

we just compare these two numbers so of course since we are not normalized by P of X it will

not exactly be a probability value we can call this as score, and we compare this course we

get in whichever is the higher score we assign it to that class, the input data point to that class

ok.



So how do we actually go about doing that right so let us just look at the calculation so we

want  to  calculate  P of  C given  X ok,  so  X is  not  in  this  case  it  is  not  1  variable  one

dimensional right, it  is n dimensional,  ok n dimensional so which means that there are n

features ok. So we can explicitly write down this P of X this is what is written explicitly here

P of X 1 to X and given C times P of C and then we apply Bayes the chain rule of probability

to this particular expression P of X 1 to X n given C which then we can write it in this form.

So P of so if you if you look at it, it is P X 1 to X n you have taken X 1 as I say it is individual

variable and then group these as 1 variable X 2 to X n is 1 variable so then we can again once

again use the Bayes rule to rewrite this as P of X 1 to sorry we can use the joint probability

how we write the joint probability in terms of conditional probabilities you can use that rule

to write down this P of X 1 to X n given C as P of X 1 given X 2 to X n and C times P of X to

take to X n given C, ok.

So which is the way we write how we learn to write the joint probability in terms of the

conditional probability if you recall I will use the A and B instead of X and Y just to we wrote

P of a given B as P of A and B sorry given P of A given B times P of P that is exactly what we

did here but then there is a conditional probability here which is conditioned on C the class

and of course we have taken that it account when it wrote it up, ok.

So this so if we can do this successfully right so we have done this for X 1 now X 1 is here

again we will take this and we can write it as P of X 2 given X 3 to X n comma C times P of

X 3 to X n given C we can write this expression like that right, so we can keep writing this

way and decompose it so but the problem is doing this calculation it is hard because then we

have to do so many terms if it 100 features you literally have to expand and then we have to

calculate this probability conditioned on you know calculate the probability of one feature

conditioned on the others all right.
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So this is hard so then what we do is to make this so called Naive Bayes approximation which

says that all the features are independent of each other so if you go back so if you look at this

let us just look at write down this term here P of X 1 X given X 2 to X n and C, so then what

happens is P of X 1 given X 2 up to X n and C ok since we assume that all features are

independent of each other then this is the same as P of X 1 given C ok because it does not

depend on X 2 takes.

So this  is  the Naive Bayes  approximation or the assumption if  you can call  it  this  is  an

assumption because you will have seen in real data features are typically not independent

there is always some correlation or some kind of relationship between the features but then



we just ignore those and then we independently calculate these quantities ok to get to the

probability of a class given a feature X ok.

So like so if you have a multi class problem we calculate this probability for each one of

those classes and assign in to the largest class of the largest probability for a given new data

point X, ok. 

So this can be written in product form and like this it is probability of C of the class prior

progress is called the prior probability of the class multiplied by i product of i equal to 1 to N

P of X i given C ok. So this comes about by making the assumption that all the features are

independent of each other so that way the dependencies of a one feature on the others goes

away and that is why we are able to write it in this simplified form, ok. 
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So as I mentioned earlier the way to do class assignment is what we call the map rule or the

maximum a posterior rule since we calculate for every class k if there are capital K classes

we calculate  this  probability  of C 1 given X 2 probability  of C k given X calculates  ok

numbers will be calculated and the data point will be assigned to the class with the highest

probability, so that is the argmax there ok, this is (())(13:39) this is the (())(13:40) of the

Naive Bayes classifier, ok so as my name select potential class with largest value, ok.
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It is no longer a probability because we have not normalized by P of X, so it is just some

number it is called a score you have added the score and it is assigned to the class with the

largest score. So multiplying so many numbers because in this case let us say we have a

thousand features or hundred thousand features this can cause overflow problems under flow

problems etcetera especially since you are multiplying with probabilities and cause underflow

problems.

So then you just calculate the log of that so deciding in another score that you can calculate

so  the  product  gets  if  you  take  the  log  of  this  whole  expression  then  the  product  gets

converted to a to a sum here ok, the we can do that.
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So let us see how we can look at we have looked at this in the I think we did the binary

decision  tree  algorithm,  so  we look at  how do predicting  tennis  with  Naïve  Bayes  right

remember  we  have  from  a  bunch  of  days  we  have  the  following  features  Outlook,

Temperature,  Humidity and Wind and based on though outlook temperature humidity and

wind we decide whether to play tennis or not, so it is a 0, 1 problem, ok.

So then let us see how we can use naive Bayes to deal with this, ok.
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So example how do you are trained the Naive Bayes classifier ok, so the probability of play

equal to Yes is 9 over 14 we have 14 data points probability of play equal to No is 5 divided

by 14 ok, so this is your P of C remember from previous slide this how we calculate the



probability of the class right and we calculate the probability of that particular feature given

the class right.

So how do we do that so the outlook takes value sunny, overcast and rainy ok, so if you go

back and look at the counts so out of the 9 times so when we say play is yes so given that the

class is that we play we decide to play twice it is sunny, 4 times it is overcast and 3 times it is

rainy, so that probability we can just calculate as a frequency right. Similarly out of the 5

times when we decide not to play when the class is 0, 3 times it is sunny, 0 times is overcast,

2 times it is rainy we will see how to deal with this 0 later but that is right for now, ok.

Similarly we can do that for temperature none for the 9 times we say we decide to play twice

it is hot, 4 times it is mild and 3 times it is cool, so the probability is that, ok. So this is

basically  if  you  go  back  and  show  you  the  this,  this  we  are  calculating  these  numbers

probability of X i given C k so what does it mean probability this we are trying to calculate

probability of temperature equal to hot when play equal to yes that is this column.

Similarly this column is probability of temperature equal to hot when play equal to no, it is

not  exactly  the  whole  column  this  is  basically  this  particular  row  that  is  what  we  are

calculating similarly the probability of temperature equal to mild when play equal to yes is

what we calculate here and with probability of temperature equal to cool and play equal to

yes is what we calculate here.

Similarly so that is the so here the class is play equal to (yesoro) yes or no corresponds to C

equal to 1 play equal to no corresponds to C equal to 0, ok and these are the exercise that we

are talking about, ok. So we can calculate these tables for the (trai) based on the training data

right,  so we can talk about  these conditional  probability  tables  based on a  training  data.

Similarly for each class classification C equal to 1, C equal to 0 we can look at humidity and

say probability humidity equal to i given class C equal to 1 here so on and so forth, ok. 

So one good exercise is to go back and see if we can do this calculation yourself ok, so that is

the way to I  do this  calculation  right.  So similarly  for wind,  wind is  strong or  weak so

probability  of  wind  equal  to  strong  given  play  equal  to  yes  which  means  here  again

corresponds is equal to 1 and this corresponds to C equal to 0 ok these are the calculations

that you have to do.



So what we do in Naïve Bayes model is we work with the given training data and estimate

these conditional probabilities just by doing the frequency of occurrence ok, so that is the

only calculation that we do for the naive based model. 
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So then what happens when new data point comes in, so new data point is a new set of

features so we have probability or we have X equal to outlook we have to give outlook,

temperature,  humidity and wind and we have to for this X outlook happens to be sunny,

temperature happens to be cool, humidity happens to be high and windy is equal to strong ok.

So then the way to calculate this probability we want to calculate probability of Class C equal

to 1, C equal to 1 given X sorry this is basically probability of C equal to 1 given X this is

probability of C equal to 0 given X, ok.



So how do we do this  we go back to the Naïve Bayes formulation,  so if  you remember

correctly  it  is  probability  of C class  of the class  times the product  of  i  equal  to  1 to  N

probability of class given feature that is our formula this is the probability of C given X this is

what we did. So the probability of C in this case probability of C equal to 1 for the first row,

probability of yes which is we calculated that as 9 over 14 if you remember there are 9 data

points which are.

So we here in this case when you do probabilities you just do the frequency, right relative

frequencies so out of 14 data points 9 times you decide to play yes so probability of yes is 9

over  14  ok  and  for  each  one  of  them  probability  of  sunny  given  that  you  play  tennis

probability of cool when you given that it play tennis, probability of high winds when you

play tennis proper your strong wind and temperature is higher I think this is a temperature.

So we can look at all these numbers up from the tables that you calculated here ok and we

just plug them back in there similarly we can do the same thing for probability of not playing

tennis.
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So for instance this is how the table outlines how we calculate it, so for feature outlook equal

to sunny these are the conditional probabilities that you evaluate and if you calculate it ok this

is the overall label this is these are the P of X i given C and this is P of C you take the product

of all of them whichever comes up with the higher score here in this case is point 026 is

higher than point 0053, so you just decide that you will play you will not play tennis , ok.
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So we can we will address the problem of what happens when you have a category with zero

in it right,  so what does that mean? So for instance if we go back I think there was fun

remember this, so what happens here so here probability of overcast given that play equal to

no is 0 there are no incident there are no events there in your data point there are no you do

not have any data point with outlook is overcast and when you decide not to play ok, you do

not have that data point so then when you construct this empirical probability you get 0.

So what is the problem with that let us say instead of Outlook being sunny I put Outlook is

overcast especially here I put overcast then I will be multiplying with the 0 one of these

numbers is a 0 right instead of 1 this one will become a 0, so then we get up 0 probability so

that does notices make sense, ok. So one way so you will go back here.
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So the one way people addressed this one way to addresses is if you at if you get any feature

which has like a 0 probability or frequency you can you tend to you can just ignore that

feature  ok but  that  is  like  a very strong decision to  make because it  might  be the more

important  feature  except  that  maybe  you do not  just  have  data  points  right.  So  there  is

something called Laplace Smoothing which is basically you add one to the numerator so you

can of increase the probability by assuming some uniform distribution that is what you are

doing.

So for instance if this in this case let us say there are two features and that is what is here and

one of them feature as 0 frequency of occurrence you have a 0 there ok and you have in this

case P of X 1 or C instead of putting a 0 you just 1 over the count that you typically have the

denominator of for that particular class plus n ok, so for each one of them you can do a

similar thing.

So for instance if so since you have increased this artificially ok you can also do the same

thing by for the other class for the other features, so far even for feature to where you actually

have data where it is not 0 you have the count for X 2 and C basically this is a number of

times that X 2 happens when class is C and then you increase that also by 1, so this is a

technique it is called Laplace Smoothing wherein you artificially add to the numerator of that

class and that way you make sure that there are no zero multiplications ok, go back and show

this probability calculations for this particular data set right.

So how do you calculate these probabilities right, so we saw that just to we will just walk

through this so we are trying to calculate if you look if you go back and look at the Naïve



Bayes formula we are trying to calculate these numbers probability of X given category in

this case the example we looked at the category is 1 or 0, 1 corresponds to yes 0 corresponds

to no, ok.

So in this case we are trying to calculate probability of x given a feature X in this case feature

is sunny actually or let me rephrase that so you would be are really clear about how this

works. So we want to calculate the probability of the feature sunny sorry we have to I am

making the same mistake again so what it is ok in this calculate the probability of feature

outlook this is the feature outlook is the feature right, it  is the name of a feature and we

wanted to take a particular value given that we decide to play ok given that class is 1 that is a

probability that we want to calculate.

So the way to calculate that is we compute the number of times, so before it we do the new I

have let us do the denominator first so we are looking at the category one class equal to 1, so

the number of times in the data set that class equal to 1 occurs is 9 right and among all the

data points per class equal to 1 how many times is outlook equal to sunny right that is 2 that

is the (prob) how you calculate the probability here based on the training data.

So based on the training data whether it is in this case this is categorical right this particular

feature  is  categorical  because  it  takes  on  three  values  and  sunny, overcast  and rainy  ok

similarly  in  fact  this  in  this  entire  data  set  all  of  them are categorical  there is  no actual

continuous variable or anything but that is how you would calculate it, so far it says let us go

back so if  you look how many times do we play we play we decide to play we say yes

category this is equal to 1, 2, 3, 4, 5, 6, 7, 8, and 9 times ok and out of these 2 out of this 9 we

have outlook sunny twice if you look at it ok, so both times we decide to play both 2 times

when outlook is sunny we decide to play.

So that though that is why the probability of X given C in this case where outlook is sunny

given play equal to yes that is what this corresponds to, so this is 2 over 9 ok so this is what

we have to calculate for every one of those variables for every class right. So other way to

again look at it is if we have a let us say 3 or 4 classes then there will be 3, 4 columns here

and for each one of those columns you have to calculate the probability of that particular

feature occurring with that particular value ok and make that table.



So Naïve Bayes training basically involves making this probabilistic table so depending upon

the variable and your training data you will have to make the figure out a way to calculate the

probability. 


