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Hello  and  welcome  back  in  this  video  we  will  look  at  probability  distributions  notably

Bernoulli and Gaussian distribution. All the slides were provided by Dr Christopher Bishop

based on his text book PRMLD ‘Pattern Recognition and Machine Learning’ textbook.
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So we will first consider the Bernoulli distribution which deals mostly with binary variables,

so basically these are 2 states either 0 or 1 okay, so if you have a feature which can take either



of 2 values that would be a good example of binary random variable okay, so just have an

example we consider coin toss experiment with a damage or biased coin which means that

the probability  of  either  getting heads  or  tails  is  not  the same,  so maybe there is  higher

probability of getting a head than getting a tale when you toss it away okay. 

So we will consider the random variable x which is linked to the event heads or tails okay, so

depending upon the event x will take a certain value, so if you toss the coin and you get heads

x gets the value 1 and if you toss the coin and you get tails x gets a value 0 okay, so that is

you variable x is referred to as a binary random variable and it is either associated with you

getting either heads or tails based on coin toss. 
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Now what  we do is  we will  assign a  probability  with that  event,  so since this  is  not an

unbiased coin this has a bias, we will say that the probability of getting a head given 1 coin

toss is given by the value mu okay, so mu (())(1:55) probability that if you toss the coin once

the probability of getting a heads is mu and this is a notation, so this mu is the parameter for

the Bernoulli distribution right. So if the probability of getting a head is mu okay, what would

be the probability of getting a tale should be since heads or tails are mutually exclusive it will

be 1 minus mu, right so given a coin toss event if you want to predict  the probability of

getting either a heads or a tails then this can be given by this cumulative expression. 

So which is basically probability of x given mu where x is the event heads or tails is given by

this expression mu raise to x 1 minus mu raise to 1 minus x, right so how does this works?

Because if x is heads (())(3:11) then x equal to 1, so the probability of x equal to 1 given mu



would be just be mu times 1 minus mu time 1 minus 1 it will be just mu it is correct right and

the probability of x equal to 0 given mu is mu raise to (())(3:32) time 1 minus 2 mu raise to 1

minus 0 which is 1 minus mu okay so that is correct, so the probability of getting a heads or

tails is what this… 

If you want to link it to some experiment in that way this is what it denotes, the mu is the

parameter  for the Bernoulli  distribution,  so in problems where we define…where we are

dealing  with  this  probability  distribution  most  of  the  time  the  problem  will  be  about

estimating mu that is what we will be doing most of the time. So given mu we know we can

now formulate the expression for getting a heads or a tails, so probability of x equal to 1

probability of x equal to 0 given mu. 

The average value of mu of x is mu okay we will see that with a small example some time

later and the variants of x is mu times 1 minus mu okay so these 2 you can actually calculate

based on your formula for expectation as well as the variants right, we will look at more

concrete examples later on but this is just an introduction to the probability mass function for

the Bernoulli distribution right, so this is given by mu raise to x times 1 minus mu raise to 1

minus x where x is the event x can be either 1 or 0 depending on whether it is heads or tails

okay so this is just not for coin flip whenever you have any variable that you can associate

with like 1…either or choices like there are only 2 choices for that variable can take them in

associate Bernoulli random variable with that quite easy okay.
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So the parameter estimation for the Bernoulli distribution, so it is called the maximum (())

(5:10) technique we will see what is that again later on but just from a common sense point of

view we should be able to follow this argument, so we have a set of these events, so let us say

tail N coin tosses okay, so out of which we get m heads and N minus m tails okay this is (())

(5:29) I think okay. 

So what is the probability of observing this sequence of m heads and N minus m tails okay

this is what is note so probability of observing the data set given that probability of heads,

this is the condition probability is basically since each of these events is independent we just

to do the product of the (())(5:56) each of this probability so that is what this expression does,

so since  you are doing N coin  tosses  then  for  each coin  toss  what  is  the  probability  of

observing the head that is probability of x given mu and so since there are capital N coin

tosses you just multiply all of them that is what gives us product and instead of probability of

x (())(6:15)  substitute  the expression here if  you saw for the probability  mass action for

Bernoulli distribution. 

So recall that probability of x even mu is mu raise to x times 1 minus mu raise to 1 minus x.

Here we have sequence of N coin tosses, capital N coin tosses, so for each coin toss we can

write  this  as  a  probability,  since  there  are  capital  N  coin  tosses  each  of  them  being

independent we just take a product, so this symbol here represents the product okay of m

capital N terms okay. 

From a computational point of view since multiplication can lead to some of these numerical

errors  if  you  take  a  log  of  this  expression  since  you  take  the  log  of  products  then  it

decomposes into a sum of the logs okay because you can take the logarithm, so we will say

log of let us say 2 a times b is log A plus log B you can do that right so that is possible, so that

is what we have done for each of those terms, so that is the expression rightly here. Taking

the log of this product decomposes it into this sum right. Then if we substitute the value in

here we can expand it in this fashion, so if you to write it down in a concrete way. 

So log of the products N equal m capital N terms mu raise to x. 1 minus mu raise to 1 minus

xn, so the log of this entire expression, so this a product of capital N terms, so we can write

this as a sum of capital N terms by taking the logarithm inside, so that will get cap summation

over n equal to 1 to n, so the log of mu raise to xn is we will get xn log mu right plus…these

are products you can this become a summation here plus 1 minus xn log 1 minus mu, so this

summation is for this entire term okay. 



So simple thing of writing the logarithm of products as sum of logs okay that is what I have

done, so then if you want to estimate mu you can set the derivative of this log pDu to 0 with

respect to mu and then you can calculate mu ML as total number of heads divided by the total

number of tosses, so m is the total number of heads okay, so you might wonder why would

we consider this expression and why do you want to take the derivative of this, so you can

consider this log pDu like a loss function okay so how is that loss function? 

So we formulated this probability of capital D giving mu but probability of capital D is here

data, data is basically the sequence of coin tosses, what is the probability of observing this

coin tosses given this  Bernoulli  parameter  that  is  what  this  expression evaluates  to  right

because each coin tosses independent of each other, we write the probability of observing the

data  as  the  probability  of  observing  x1  times  the  probability  of  observing  x2  times  he

probability of observing x3 so on and so forth up to the probability of observing x1 so the

product  all  these  terms  each  of  the  product  but  then  we  know  the  expression  for  the

probability it is Bernoulli random variable x. 

So we can plug that expression in there and the rest is just algebra, so now we have got the

probability of observing this data set that is this sequence of coin tosses given this mu. Now

what we want to do is we want to maximise the probability of observing this data set right so

that  is  the  idea  (())(10:19)  construct  in  this  probability  distribution.  So  if  you  want  to

maximise the profitability of observing the data set, the same as maximising the log of the

probability of observing this data set the same as maximising the log of the probability of

observing these datasets with respect to mu the parameter that you want to estimate. 

So by taking the derivative with respect to mu of this function, this log pDu then you can

calculate mu ml so this is referred to as the, this log of p this terms is always referred to as the

log likelihood and this p of d given mu is referred to as the likelihood. What is the likelihood

of observing this data set given this parameter  mu, so this is Bernoulli  trial,  sequence of

Bernoulli trials and it is characterised we assumed that it is characterised by this mu which is

the probability of observing x equal to 1 okay so we then consider construct the probability of

observing the entire  data  set  which is  x1 to x1 through xN we assume that  each trial  is

independent of each other. 

So it is just the product of the probabilities of observing each individual trials that is what this

(())(11:28) in this expression and you just to plug-in the formula for P of x given mu for

Bernoulli distribution and then take the log because then it is easier to process that way and



then differentiate this law with respect to mu and set it to 0 and that will give you…and from

there you can derive mu ML, I have not gone through the algebra but it is not too hard to do

okay so this expression this probability of observing a dataset given the parameters of your

distribution is referred to as the likelihood and taking the logarithm of that usually referred to

as the log likelihood okay.
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Now we consider another distribution which we are often using from now on, it is known as

Gaussian distribution here again the form of the distribution is given here. We are not familiar

with it (())(12:15) by just going through this question, the Sigma Square is the variance again

note that this is for a one-dimensional variable, so x is a one-dimensional variable and we are

looking at one x and Sigma square is the variance, mu is the mean of the distribution okay

and what does this expression evaluate? 

So if you have a value x of that event, so this is for continuous variables so if you have a

value x this expression will evaluate is the probability of observing x, what is the probability

of  getting  x?  okay  so  what  is  plotted  here  on  the  graph is  the  graph of  the  probability

distribution wherein the x axis is s and y is the probability of observing x okay and the mean

is an mu. This width of the distribution is 2 Sigma where Sigma is the standard deviations,

Sigma square is the variance. 

Now if  you are not  sure as to like okay what  kind of variables  lead to this  kind of the

distribution okay, so just to give you a practical example let us consider let us see a class with

hundreds of students and then they take an exam, so you get the marks of every students, so



we have a student serial number I will just have a table here okay. Serial number of students

then marks okay for that particular test, so the student serial number goes from 1, 2, let us say

100 and the marks also well it will also go from in this case let us say they go from again 40

to 100 everybody passed let us say we have worked hard threshold of 40 and everybody got

over 40. 

You can imagine that marks will go from let us say 41, 41.5, so on and so forth but let us say

nobody got less than 40 let us say something like that okay and somebody could have got 100

so on and so forth okay, so this is our data, we have about 100 students and the marks in an

examination,  so  what  you  do  is  you  construct  a  histogram.  How  do  you  construct  a

histogram? So let us take an axis, this is marks okay and it goes from just for the sake of

convenience you have 4200 okay so to care to construct a histogram is you make them bins

on your axis, so we will make bins of size 5 so 40 to 45 is one bin, 45 to 50 is another bin so

on and so forth okay up to 100 okay, so what you do is you count the number of students

whose marks fall between 40 to 45 okay let us say some number, this axis is the number of

students okay this is the number of students. 

So you count the number okay so you do that for let us say all of them, typically what you

will get will be something along these lines I am drawing its move so you will get something

like this. So you make bins of size 5, so 40 to 45, what are number of students who got marks

between 40 to 45? What are the number of students what who got marks between 45 to 50 so

on and so forth and you just plot it as a histogram wherein the x axis give you the…you can

plot with the center of the bin, so instead I have just indicated here as 40 to 45. 

Instead of doing that you can just say 42.5 and plot that number 52.5 and plot that number so

on and so forth 47.5 and plot the number of students between 45 to 50, so you can plot that

and you get this histogram okay and if you normalise the y-axis here the number of students

by total number, what you get is the probability distribution of the marks that the students

scored in that particular examination okay so it is a very good way of summarising what your

class performance is like okay so you can easily say if you can let us say somebody gets 40

marks you can plug that and see you know whether is one of the few students, what are the

probability that he got…how far away he is from the main thing of that sort. 

So to summarise the statistics of a class this is a good way of doing it because then you can

easily assigned grades using this okay, so that is one of the things that people do usually the

calculate this curve and use this curve to assign grades right, so you know the mean, this is



the  mu  we  will  see  how the  mean  the  standard  deviation  are  estimated  for  a  Gaussian

distribution, something that is very familiar to you but the upfront assumption that you are

making every time you do this calculation is that you are assuming that your data falls under

Gaussian distribution right. 

So I am giving you examples of marks, can do that for let us say you measure all the heights

of all the students in your class okay you have a class of hundred or several hundred and you

measure all their heights and if you plot again histogram of heights based on some bins then

also the distribution will look very close to a normal distribution or for that matter many of

the  quantities  that  you  measure  might  look  like  a  Gaussian  distribution  because  any

calculation that you usually do makes this assumption, we will see what those calculations

are but this is in 1d okay this is for 1d example, one-dimensional example where in you have

marks okay. 

Sometimes the variable x you are looking at is multi-dimensions let us say of dimensional

you are used to the dimension small n but for the purposes of this lecture I am going to use

capital D okay, so if your dimensionality of x is capital D so let us say x has many features

that is one way of looking at it right. If x has many features then x should be some vector of

link d, this mu will be a vector of link d because each dimension will have its mean so mu

will also be like d. 

This Sigma it is called the covariant metrics and it has size d cross d okay and this is the

modulus is determinant of the covariant metrics square root okay so this is the determinant

okay, so this is for a multi-dimensional x this is how at the Gaussian distribution formula is

link okay so what you have plotted here in this figure basically is the let us say if d is 2 okay,

2 variable x1 and x2 okay and these red lines are contours of constant probability or constant

probability mass function. 

So for instance if you plug-in this x1 and x2 find out all values find out the range of all values

of x1 and x2 for which n is similar or same then you can plot this…the locus of all those x1

and x2 is basically this okay so what it shows is that the x1 and x2 are co-related slide kind of

right because x1 seem to…x2 seems to linearly increase with x1 okay. So this plots are that

way useful to figure out whether there is co-relation between your variables when you are

dealing  with  multi-dimensions  variable  okay. So  this  is  a  general  form of  the  Gaussian

distribution, so it comes in the exponent so you will be typically writing it as something like

this for one-dimensional and you will have 1 over square root 2 pi Sigma okay. 
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So then for a Gaussian parameter estimation, so remember we saw for Bernoulli distribution

we estimated,  we looked at  how we can estimate the Bernoulli  parameter  mu which is a

probability x equal to 1right, so how do you do the similar things because we have the normal

distribution, it is also called normal distribution or the Gaussian distribution is denoted as 2

parameters mu and sigma square, so we want to estimate mu and sigma square, how do you

do this? Okay so recall that this is for continuous random variable, so x can take any real

value but usually data is discreet right we only observe for specific x right that is the thing. 

So we then again once again what you do is based on their observation, so this blue points or

the observations we have, so based on this observation we calculate probability of observing

the data or the likelihood. Likelihood of observing capital X refers to the data that we have

observed, so let us say we have capital N points once again like we saw in the Bernoulli

distribution the probability of observing the data set is the probability of observing each one

of the individual data points and we know that the probability of observing each data point is

given by the normal distribution,  so the total  probability  of observing this data set is the

product of each of the individual probability which is what is given by this expression okay. 
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So then what we do is similarly we take the log of that is likelihood and the log of the product

transforms to summation of the logs which is what is given here. I urge you to actually work

this  out  yourself  because  it  is  virtually  algebra  but  it  will  also  be  comfortable  with  the

expressions here. Now once we have this expression what we want to do like we saw earlier

we use to maximise the log likelihood of observing the data right that is what we…mu and

sigma square should be such that the probability of observing this data is very high, then the

way to do that would be to take the derivative of this expression. 

So d Delta over delta mu of log of P x square set that to 0 and then you will do Delta over

delta sigma square of the same…also Delta Sigma set that to 0 and then once you solve for it

you get 2 results which none…both of it should not surprise you. It says that the mu ML this



is called the maximum likelihood technique mu ML is nothing but the average of your data

points  okay and your  sigma square which the variants  in this  parameter  in  the Gaussian

terminology is called variants which is nothing but the you calculate the variants of your data

given mu ML that is what you get okay which is basically the mean of x minus mu ML

square that is the mean of x minus mu ML square is the Sigma square value here. 

So this is typically the statistics that you always calculate right whenever you have any data

set or you are like we will characterise it by using the mean and standard deviation. When

you do that what you are assuming is that that your data comes from a normal distribution, so

your data set come from a normal distribution and these are the assumptions that you are

implicitly making when you calculate mean and standard deviation, the assumption being that

your data is normally distributed that they are drawn from this normal distribution with a

particular sigma and particular mu okay. 

So in the context of machine learning what we will again, we will model data using these

distributions, so for instance where we have problems which involves 0 or 1 choice we will

use the Bernoulli distribution and where the problems are continuous variable involved will

use the Gaussian distribution and the problem… you will see that the problem and I will

explain this in a later video, we will see that what you trying to do is to…we will end up

modelling this mu using our data and for even linear (())(24:47) can be bought in this form

we will do that in a video soon. 

So we end up modelling or we are trying to estimate this mu sigma or in the case of the

Bernoulli distribution again the parameter Bernoulli parameter mu those are what we try to

estimate  every time okay. As the  output  that  we are  looking at  and implicitly… What  I

wanted to show with this video is that typically for a given data set of you calculate mu and

Sigma okay. This is done implicitly in many of the models that you are using, we will see that

in a later video. 
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So if you want to consider a multi-dimensional data where each of the x1 have let us say D

dimensions okay the procedure is the same so we still construct the log likelihood of the data

given a dataset consisting of n points and independent and identically distributed that is what

i.i.d stands for independent and identically distributed. So the probability of observing x1

times the probability of observing x2 times the probability of observing xN so for all the N

data points the products of each of these probabilities is the probability of (())(26:18) in the

entire dataset okay and we do that like we did it for the 1 time (())(26:23) case and we can

still do the log of the probability and you will get an expression like this. 

Once  again  can  take  the  derivative  with  respect  to  mu  remember  now  mu  is  a  multi-

dimensional variable and you also take the derivative with each of the common again sigma

is a matrix here so it has d into d plus it has d square elements okay so once we do that we

can do the similar process wherein taking the derivative with respect to new and this capital

sigma set it to 0 to obtain the value of x and set okay. 

In this context remember this,  in order to describe a Gaussian probability distribution,  in

order to estimate or calculate a Gaussian probability distribution we just need 2 quantities one

is this remember we just need the mean and this variance okay, so these are referred to as the

sufficient statistics we call that right so we are going to need all the data points in fact that is

one of the reason why you construct this probability distribution, if you have a large data set

you can actually summarise the data set with just 2 parameters. In the one-dimensional case it

is just mean and standard deviation, in the multi-dimensional case you will have more than

that because remember this is d cross D matrix. 



So you will have D means right because each dimensions has a mean and feature has a mean

and  this  will  turn  out  to  be  symmetric  matrix  so  you  will  have  D  into  D plus  1  by  2

parameters,  independent  parameters  right  because  if  the  symmetric  matrix  these  are  the

unique D to D plus 1 by 2 unique elements of sigma okay so it is still a lot remember if there

are hundred features it is a lot of parameters to estimate, so typically when you are solving

these problems using for probability techniques what people usually do is they assume that D

is diagonal okay, so that you have only D parameters to estimate. In fact you can even…they

assume that you know if D is given by some sigma square times identity matrix, so then you

just have again only one parameter okay, so depending on how you model you can reduce the

number of parameters you would like to estimate using multidimensional Gaussian okay. 
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So (())(28:59) we will set the derivatives of the log likelihood function to zero again with

respect to mu and you can actually solve to obtain that for mu again for the multidimensional

case is  the mean of your data points again remember that these are vectors so for every

dimensional you have to independently calculate the mu and once again the covariant matrix

is given by this expression the average or for the expectation of your this term here x minus

mu ML times x minus mu ML (())(29:35) again member x and mu are vectors of dimension

D okay so we have looked at 2 distributions Bernoulli and Gaussian, Bernoulli distribution is

used to describe variable that can take 0 or 1 values. 

A typical example is coin toss, so it has only one parameter which is basically the probability

of observing x equal to 1 okay x equal to one might respond to any event like for instance

even we have talked about this is the coin toss where in x equal to 1 corresponds to heads x



equal to 0 corresponds to tales, so what the distribution is characterised by probability of x

equal to 1 which is given by mu and we also saw how we estimate mu, mu is just the number

of…if you have given sequence of N coin tosses we just calculate the total number of coin

tosses where it landed as heads which corresponds to the total number of N x equal 1 and the

ratio of the total number where x equal to 1 divided by the total number of actual coin tosses

this gives you the estimate of mu there are in the Bernoulli distribution. 

For the Gaussian distribution there are 2 parameters one is the mean under standard deviation

of  covariance  in  higher  dimensions  and  mean is  basically  the  mean  of  your  data  points

observed  data  points  remember  that  you  have  to  take  the  mean  across  every  feature

independently and the covariants is nothing but the covariants of x again it is 0 centered so x

minus mu ML times x minus ML (())(31:19) the mean of this value is your covariants matrix. 

Again remember x and mu are again D dimensional where D is the dimensionality of x. Okay

so subsequent  to  this  we will  look at  various  techniques,  leftover  techniques  in  machine

learning, we will look at SVM we will look at name base classifier and then we will move

onto maximum like (())(31:48) destination, how would a price that says linear regression then

maximum a posteriori methods and then finally Bayesian regression. We might postponed

Bayesian regression to the next week but maximum likelihood estimation in map techniques

we will look at this week. Thank you.


