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Hello and welcome back, in this video we will look at boosting which is another technique

for improving the performance of decision trees most of the slides, graphics and illustrations

were provided by Intel  software and the content  is  inspired by the textbook elements  of

statistical learning, ok.

(Refer Slide Time: 00:32) 



So we saw that in the last lecture bagging improves performance primarily by reducing the

variance and that is accomplished by training multiple decision trees over bootstrap samples

of your data ok and the output is basically the average of all the decision trees entire when

you are looking at  a classification problem or to take a majority vote if the output is the

average  from all  the  trees  when you are  looking at  a  regression  problem or  you take  a

majority vote if you are looking at classification problems.

So  in  this  lecture  we  will  look  at  boosting  which  is  an  alternative  to  bagging  and also

improves our prediction accuracy, ok. 

(Refer Slide Time: 01:20) 

So we will take a brief overview of boosting, I just to get an understanding of the algorithm

and one of the classifiers used in boosting is a decision stump it is basically a band is a tree

with a classification tree with one node and it splits the data space into two these decision

stump are referred to as based learners and if you want for booting if you want for boosting or

bagging we can use these stumps or more complicated decision trees.

So as I mentioned we earlier the building block for boosting is a decision (trump) stump

primarily and it has one node so if you look at particular data set which has temperature as

one of its features, so we can split the feature space into two at this particular node based on a

threshold on the temperature, so it is just illustration of how the decision stump space is split

into two and this is your classification boundary.



So the all the data elements data points the right of the classification boundary or belong to

one node and the left to the other, ok. So we will use a collection of these to perform boosting

let us see how it is done, ok. 

(Refer Slide Time: 02:50) 

So before we so we how we create an initial decision stump based on one of the features to

split the data space into two ok, so just for the sake of illustration here we just showing a 2d

plot of course we know that an input data can have multiple features so we are looking at just

one feature and maybe here this is a visualization of a couple of features ok, so well based on

the splitting ad by the decision stump then we have two classes, so again we are looking at a

binary classification problem where the output is either minus 1 or 1 ok.

So we have the decision boundary and we have correct classification of the red ones red data

points to the left and the correct classification of the blue data points to right these red crosses

on the right or basically misclassifications right, so then what we do is we adjust the weights

of those points so we assign some data waiting to those points when you calculate the loss

function for decision stump we do a further classification after assigning weights.

So think of assigning weights as you know if you take a simple least squares cost function

you will assign a higher cost to these data points compared to the others or if in fact you can

even separates or make the contribution of these data points minimal compared to that is the

data points that have been classified accurately to a minimum and you can assign higher

weights to or higher weights in the sense higher loss for miss classification loss to the data

points that have been misclassified in the by the previous decision stumps.



So then we have this riveted data points which you classify again to get a new classification

mode in this case again all the red points have been classified correctly while the they well

there are a few miss classifications for the blue data points, so one and then one more time we

do the riveting  and get  a  new classification  boundary here,  so the  output  of  boosting  is

basically the sum of all these boundaries of all these classifiers, so each one of these we call

this G 1 x, G 2 x, ok so each of these classifier G 1, G 2, G 3 provide you a classification

boundary and based on the classification boundary you have classification as minus 1 or 1 the

points that are misclassified are accorded higher weights for the successive classifier.

So most of the time these are decision stumps that is what we saw earlier versions stumps

right, so the next G 2 is a decision stump which takes the same data as input but the data

points are which have been misclassified by the previous decision stump for given a higher

waiting finally the classifier that you use in the end is basically the summation of all the

individual classifiers, ok. 

(Refer Slide Time: 06:15) 

So and in order to improve this since they are prone to over fit you typically have a weighting

factor here alpha that is I could call it so this should be different for each one of them so I will

call alpha 1, alpha 2 so on and so forth to get your final decision boundary, ok. So the result

of boosting is a weighted sum of all classifiers and successive classifiers are weighted and

successive classifiers are weighted according to some scheme which we will see in a later

slides, ok. 
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The Adaboost algorithm which is one of the boosting algorithm start up boosting algorithm it

is a very popular boosting algorithm, we look at it in the context of a two class problem

where the output of the classifier is minus 1 or 1 is basically the so it is a binary classifier and

the  resulting  classifier  is  the  weighted  sum of  individual  classifiers  we  have  Capital  M

classifiers each of them can be decision stump.

So we have a weighted sum of these classifiers as the output so the sign of the weighted sum

of these classifiers is the output ok that is the problem we are trying to solve, so how does the

Adaboost algorithm progress so initialized data weights to 1 over N so when we start out we

assign the same waiting 1 over N where N is the total number of data points to each of the

individual data points x i ok and for M classifiers capital M classifiers for each iteration you

fit a classifier to the data x i using the weights w i. 

So in the first iteration the weights are just 1 over N and they are all the same ok so and then

we compute this  term error this  error term after  the classification which is  given by this

expression so this is nothing but the weighted error term, so if you look at this particular

expression here this is nothing but the number of samples that have been misclassified so G

m of f x i is the output of the M classifier and y i is the ground truth and you are just counting

i is the indication or indicator function, so we are just counting the number of samples x i that

have been misclassified by this G m, ok. 

So the error that we calculate for this classifier in the M iteration is the weighted error based

on the weights which for the first iteration is 1 over N ok so how do we update the weights



that is what we will  see, we compute also have to compute these alpha m which are the

waiting is for the individual classifiers, so we can calculate alpha m using this expression ok

and once we have calculated the Alpha m then we can go ahead and update the weights.

The weights for the next iteration are given by this expression where again it is a weights

from the previous  iteration  times  this  exponential  factor  ok,  so this  is  the loop which is

performed M times in the end we output the classifier as the weighted sum of the individual

classifiers,  ok. So this is just the algorithmic summary for what we saw earlier in a very

illustrative form, so in every iteration you fit your data to a what is called a weak learner or a

weak classifier ok and you look at all the data points that have been misclassified and you

when you assign higher weights to those data points so that is what this step does.

So you are assign higher weights to those data points and then you take those data points all

the data points including the ones that have been misclassified but then with higher weighting

and you if you and you perform one more and if and you fit that data again using another

classification tree or as or other classifier and you repeat that as many times as the number of

classifiers that you want to use, ok then it is easy to see that it that the since this M is none of

the seems like a free parameter it can most easily over fit, so that is one of the reasons why

we iterative calculate the waiting is so that the learning up happens very slowly, ok. 

So over a large number of classifiers you will come to a we weighted linear sum would give

you a good classification accuracy the point note is that this individual G i is or G m is can be

weak learner in a sense they perform as well or maybe poorly than random classification, so

if you accumulate all of them over M i capital M i iterations you can get to a very high

performing classifier, all right. 
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So where does this idea come from, so it is basically has roots in this additive modelling so

where we have this particular model where our classifier is nothing but a linear combination

of multiple classifiers, so each of this G m can be a decision stump as we saw earlier or they

can also be regular classification trees, ok. So now the problem is in we have a cost function

when see that the individual classifiers will have their own parameters and we also have to

estimate  this  beta  m is  ok,  so  how do we go about  doing  that?  So we are  then  that  is

accomplished using this forward stage wise additive modelling, so let us have a look at that.

So we start off with a function initialize to 0 then for M steps so as many classifiers as we

have optimize the parameters of the M basis function or classifier so the way it is called basis

function is that so if you might all be familiar with the linear regression class that you have

been through, so we can let us say if you are doing regression let us say Y we can model as W

naught plus 1 x in this case plus x to the M write capital M.

So this is one of the models that we have you that is that we have seen in linear regression so

we can consider each of these this x, x square x to the M these polynomials as the basis

functions, so we can write it in this screen so here these correspond to the G m of x ok, so we

can think of each of these classifiers as some basis function and we are trying to iteratively

estimate the parameters corresponding to each of them and also the weighting that we have to

assign.

So there is a weight or in this case these x are very this is a very simple polynomial so we can

assign for instance instead of x we can use some basis spline functions ok they will have



multiple parameters  that we will  have to determine,  ok. Now when we put this in a cost

function  it  becomes  very  difficult  to  determine,  so  what  we go about  doing is  in  every

iteration we only estimate that particular G m, so an mth iteration we will only estimate G m

of x ok without chaining the parameters of the first M minus 1 classifies that we have built

ok.

So  for  every  iteration  optimized  parameters  of  the  mth  basis  function  ok,  so  which  is

basically given by this formula here, so argmin with respect to the beta and gamma M L is the

loss function for one data point so it is summed over n data points so L is a function of, of

course  your  well  takes  as  input  your  ground truth  y  i  your  classifier  from the  previous

iteration and this is the classifier that we want to estimate ok.

So the beta and G or what we have to figure out in this iteration when we make no changes to

the parameters involved in the classifiers and the beta from the previous iterations, so once

you  have  done  that  then  we update  the  we update  the  classifiers  as  by  adding  with  an

appropriate weight is the basis for the Adaboost algorithm that we have seen, so in this case

the loss function we have not specified exactly what it is so we can actually look at a very

simple loss function let us say we are looking at Y minus I will just call it G m of x square

which is your least squares cost function so based on this this L is just that which we can

write it as I am just going to use x i I am going to do it for one data point right because the

sum of all of them so which is y i minus G m minus 1 of x i minus beta G of x i square.

So  we  have  developed  a  classifier  till  the  M minus  1  iteration  right  and  we  have  just

substituted this expression here and we have instead of G m of x y we have just used this

expression G of m minus 1 x plus beta M G of x, so we this is really the cost function that we

are optimizing if you use a least squares cost function now you can easily see that this is

nothing but the residual from the previous iteration, so there is it so here we can just call it r i

minus beta G of x i square, ok. 

So if you use a large least squares cost function what you are what you will end up doing is

you will fit a particular regression algorithm to machine learning algorithm to it I would say

regression tree, so we will get you will fit a regression tree to your data and then you will

calculate the residual so for every x i you will get an output and you subtract that from the

ground truth so we will have residuals and in the next iteration you will take those residuals

and feed them with your input data, ok. 



So that is the that is how it progresses if you are if you use a least squares cost function now

instead of a least square cost function if you use an exponential cost function what you end

up with skating Adaboost that is what we will see now.

(Refer Slide Time: 17:29) 

The Adaboost loss function or the algorithm that we saw for Adaboost comes from using an

exponential  loss  functions  and the basis  functions  or  the weak learners  or the individual

classifiers this can be decision trees or stumps. So previous remember previously we saw this

L of y comma G of x I am omitting the subscripts i we saw that as Y minus G of x square this

is what we use to be as an example in the previous slide, so instead of that we have an

exponential y minus y times G of x, ok. 



So this is this product for a classification problem is often referred to as a margin right, so

you can easily see that let us say your output is a sub so your category is minus 1 and let us

say your classifiers also inputs minus 1 then it is greater than 0 right let us say your category

is 1 and you are in your classifier also outputs 1 then it is again greater than 0, so for all

positive values of this product you have correct classification and all negative values you

have a miss classification, so that is the margin or you can think of it as the distance from the

decision boundary is what we look at.

So when you introduce this exponential function as the loss function in order to solve your

additive model  again to recall  we saw that  for these Adaboost comes under this  additive

modelling, so we wanted to get to a classifier which is the sum of individual classifiers ok

right, this is what we sort out and we wanted to optimize an appropriate cost function to

estimate each one of them.

Now if you want to do it the right way then you would (actua) eventually we have a loss

function that will try to estimate all of the parameters of G m and beta m in one shot by

optimizing a cost function but that becomes very complicated let us say Capital M is let us

say 100 weak learners then there are 100 sets of parameters for each one of the G m is here

ok or each in this  case decision tree,  so you might  wonder what  would be what are  the

parameters for addition tree the parameters are denoted by gamma and they are basically the

nodes and the features that was split on ok, so that you have to estimate for every tree that

you fit.

So to elevate this problem we have the additive stage wise modelling wherein we initially

estimate  we have we do M i  iteration  capital  M i  iteration  where  we start  off  with  one

decision tree typically in this model suggestion tree which has the one decision tree or a

relation stump and you estimate that the parameters of the decision tree in this case how you

grow it and the nodes and the features and successfully update by, so if you have let us say m

i small m i iterations you do not change the parameters of the first m minus one iteration but

only  consider  the  parameters  of  the  mth  titration  right  only  update  the  parameters

corresponding to the m transition.

So that is this stage wise modelling helps to solve this problem so this is the easier way to so

if you will have a loss function which takes as input the y ideally it will take as input the y

and your model right so then you will estimate all of the parameters for all of the individual

decision trees for the weak learners in one shot but this is a difficult problem to solve so that



is why we saw that we take as input because you are y this is the ground truth and we have a

this is an additive model we coded G of m minus 1 x and plus some beta times G of x and we

do not touch any other parameters here but only estimate the parameters corresponding to this

ok, so that is the idea behind using this additive stage wise modelling, ok.

So for if you use an exponential loss function so this loss function if it is an exponential loss

function exponential of minus y G x n we end up with the Adaboost algorithm we will just

take a brief look at the loss function itself I am going to erase this so that you can clearly see

the formulas involved, so the problem that we end up solving if we use a exponential model

is this argmin of this loss function because all of this to all of the terms are in the exponent

right and you realize that since we saw earlier that the these the parameter (corre) here or not

at  all  affected  by  this  optimization  problem  because  we  will  only  be  optimizing  the

parameters of G in this case this gamma and beta at that particular iteration.

So we can write this as replace this by a weight ok, so this is the loss function that we end up

optimizing for the Adaboost algorithm, so again we saw some of the update steps there when

we when I outline the algorithm we can calculate the error calculate the error rate m from

there  we derived an alpha right  which is  the of  course which is  this  which is  related  to

actually beta that we see here in addition we also did a weight update so the weights every

iteration are updated right times some factor, ok so all of these can be derived by from first

principle using these two expressions all I will do is optimize for gamma so in this case we

are we are optimizing for beta m and gamma m which is gamma m or the parameters of your

decision tree.

So you figure out the best decision tree by optimizing the misclassification rate or minimizing

the best classification rate and then once you hold that once you fix that then we can optimize

for beta which is which can be done by taking a derivative of this loss function with respect

to beta setting it to zero and then plugging in the, the optimal decision tree these weights the

update rule for these weights the estimate for beta extra can be obtained by just optimizing

this loss function even analytical expressions can be obtained, so this is the basis for the

Adaboost algorithm.
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So we look at just to have a look at understanding what this algorithm actually does, so we

look at this red curve here so it is a 0 1 loss so let us say we have we have a binary classifier

which classifies your output as 1 or minus 1 so what we ideally want to do is to assign 0

weight 0 to w to all the correctly assigned data points and a maximum weight of 1 to all the

misclassified data points and then move on to fitted fit it with another regression tree or a

classification tree depending on the problem ok but this kind of loss function is difficult to

optimize, so that sense it is replaced by this exponential loss function that is what Adaboost

does, ok.

So the exponential loss function as we saw is the e rest to minus margin where margin is

where this, this makes the Adaboost more sensitive to outliers then other types of boosting ok

the theoretical loss function even though is very you know in to do we can see that here so

really what we are trying to do is we take it as I said let us say 100 data points in ideal cases

what we do 100 100x ok data points let us say some 30 of them are classified correctly and

some 70 of them are misclassified ok then in the next step so this is G 1 and G 2 what you

will do is you will take 70 and then fit another classifier ok but this is a this problem even

though it looks very appealing or does not give good results because it is a difficult problem

to optimize.

On the other hand having a exponentially decreasing loss function instead of this step loss

function  helps  improve  your  fitting  ok,  so  in  the  next  class  we  will  look  at  a  further

modification to this called gradient boosting so the procedure we outlined here works very



well for the exponential  loss function however gradient  boosting techniques  are good for

pretty much every kind of loss function that you can come up with.

So it is a very generalized procedure for doing boosting and it is also one of the apparently

too many sources one of the more popular techniques to win these kaggle competitions, so we

will look at those in the next video.
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So the Adaboost loss function is an exponential loss function and the basis functions as we

had mentioned earlier  nothing the other individual  classifiers  or the decision trees  or the

stumps  ok.  So recall  that  the  previous  slide  we looked  at  a  least  squares  function  right

wherein we did y minus G of x square right and this additive modelling proceeds or the stage

wise additive modelling precedes by trying to optimize trying to estimate not of trying to

estimate this see we want to get this classifier which is nothing but and we can use either

alpha or beta but just use.

So if you have a loss function it will take as input your ground truths and your model just

what we did, right and ideally we would end up estimating all the parameters of each one of

these individual classifiers as well as the weighting factors for each of those classifiers in one

(())(29:07) but when you are using let us say decision trees this becomes a slightly difficult

problem to solve, so we solve this problem in a stage wise manner so that is why we saw

earlier that we ended up with you are initially we start off with this model that is your G x

plus ok.



So this is the mode of x here what it means is that we will not touch the parameters up to in

this model or not affected at all in the when you are optimizing this loss function you are only

optimizing for beta m and this G at this particular step in particular stage m ok and so we saw

how this  works  for  the  least  squares  cost  function  and instead  of  the  least  squares  cost

function if you use an exponential loss so what does it look like right.

So this is the so I have so L is given by so this function where this particular term y times G

of x is the margin ok so you can think of it as the distance of the data point from the classifier

further away it is the worse the classification you can think of it in that way or if for a binary

classification task you see that y times G of x is always positive right because G of x is the

output of the classifier at the end your class and your classes are minus 1 and 1 so Y times G

of x will always be positive when your classifier is right and negative when it is not, ok. 

So we have instead of the least squares we saw it like this we have put in the exponential loss

function ok and in the mth stage we will not modify the parameters of these class G m minus

1  but  rather  only  focus  on  estimating  beta  and  gamma  here,  so  for  the  in  the  case  of

regression trees or classification this gamma represent there is a nodes and the features used

in the split ok. So in every stage you will estimate 1 you will figure out 1 decision tree or

stump and you will add the add that to the classifier that you have already estimated so far till

the m minus 1th stage right.

So since this is not involved anywhere in the optimization we can (estim) interpret this as a

weight ok if you recall the I can go back and look at the Adaboost algorithm that the outline

then we had this quantities error and from where we calculated alpha m as well as the update

to the weights these alpha and the beta are related ok so alpha turns out to be I think beta or 2,

so for how do we so the estimates can be derived analytically by fixing beta and estimating G

which is nothing but the best classification tree you can get, so you get the best classification

tree by minimizing the misclassification rate once you have figured that out then then we can

then fix that and then take the derivative of this expression with respect to beta and we can do

further analysis, ok. 

So if you do that then we get all the update tools that we saw earlier so that is the basis of the

Adaboost algorithm it is way it starts from this additive model right here ok, so it states like a

linear basis function model ok so G m of x or basis functions in this case we have used

decision  trees  we  can  use  other  structures  also  if  possible  and  we  and  every  step  we

successively improve the classification or the prediction accuracy.



Of  course  so  far  we  have  only  looked  at  the  binary  classification  problems  it  is  also

applicable to multiple classes and another thing is that we have only looked at this discrete

Adaboost wherein we assume that our classifier returns minus 1 or 1 we can modify this you

know  in  the  case  when  our  classifier  returns  a  probability  values  map  with  a  0  and  1

corresponding to classes minus 1 and 1 ok, this can be also be done for the sake of illustration

we only looked at the binary classifiers. 


