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In this video you will be looking at an introduction to probability theory and specifically will

introduce the idea of discrete and continuous random variables.

(Refer Slide Time 00:26)

So probability is a mathematical framework for representing uncertainty wherever you have

some uncertain outcome. We tend to use probability as a mathematical representation of the

uncertainty in the problem. So in engineering systems we have multiple sources that such



uncertainty  occurs.  Sometimes  we  have  inherent  randomness  or  stochastic  city  more

specifically in the system. For example, in quantum mechanics the lost themselves actually

lead to some amount of randomness or uncertainty. 

Or let's say you are dealing with a pack of cards so you have a little bit of randomness thrown

in there. So in such cases whenever you try to predict something you are going to have a

probability theory coming in. Now we can look at a slightly higher level of abstraction where

you might have deterministic systems. That is the laws themselves are actually not random

unlike quantum mechanics but you might have incomplete observability which is you are you

are not able to see all that is happening in the system. For example, if you have a macroscopic

description of let's  say flowing a room, we know that inherently there are molecules and

within them atoms etc. You are not able to observe them. 

And  typically  this  leads  to  a  little  bit  of  uncertainty  in  the  properties.  We know  that

macroscopic properties are defined are derived from microscopic properties but this is done

so  actually  probabilistic  even  though  in  real  life  we  don't  treat  them  as  if  they  are

probabilistic.  You have  multiple  such  examples.  Whenever  we have  incomplete  observer

ability once again you can use probability theory. 

A third level of abstraction is you might not have randomness. You might even have in some

sense complete data plus you might have deterministic laws but still despite having full data

you actually have an incomplete Martin. The model can be incomplete as in let's say whether

models. So you do not deliberately you do not use all of the data in Article II that gets simple

models  are  tractable  markets  in  all  these  cases.  In  engineering  you  will  typically  use

probability theory.
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Now our interest of course is we want to use probability ideas in machine learning and there

are two primary uses of that, first is in constructing learning systems themselves by a learning

system I simply mean a machine learning model. Ok so you want to construct a model so if

you try and mimic let's say human. Reasoning about uncertainty we say the probability of

rain is probably sixty percent tomorrow. 

So inherently even with on our models there is some probability built in. Ok so in order to

incorporate such probabilistic thinking you have probabilistic models. So notice this. You can

have probability right built in right into the model itself.  Ok so that is one way of using

probability. Another idea is you might actually have a deterministic Model for example as we

see many neural network models are almost by design they are deterministic so you could

have a deterministic Model. 

That is how the input relates to the output is actually a deterministic process. Nonetheless the

output itself can be analyzed probabilistically because the learning system is only correct part

of the time. It's not correct all the time. So for example if you might see a Google Image

analyzer or any other image analyzer. Typically, the actual output in the algorithm as we'll see

later on in the course will not be a specific class.

It will not say this picture as it got deterministic. What we can say typically something like

this picture is a cat with probability point nine. So this would be something like an analysis of

the learning system probabilistic. It might go wrong 90 percent of the time. Stuff like that can

be  analyzed  probabilistic.  This  is  a  probabilistic  analysis  of  even  deterministic  or  even

probabilistic motives.
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Then  become  we  come  probabilistic  analysis.  There  are  two  interpretations  of  what  a

particular probability means. Now all of us know probability lies between 0 and 1 but there

are two large schools of thought. They often come into philosophical fight. You will not get to

mention that in this course at least. But just for a brief, Introduction if you take a statement

such as that a sixty percent chance of rain tomorrow. 

This can be interpreted in two distinct twists. So one way is what we are usually used to. This

is called a frequent stock model frequent. This model would be something like Ok so the

temperature rise this much the pressure today so much it's slightly cloudy. And in all such

cases  before  then  such things  happen  in  sixty  percent  of  the  times  it  rained,  So such a

statement would depend on let's say something like what you have observed so far. And that's

a frequent based approach to probability. 

It  says it  depends on the proportion of events  in an infinite  sample space.  I  see and see

shortly. It's typically an objective measure. So if I say what is the probability of a Faraday

throwing up to you will say if I throw this dice let's say millions of time two will come up

about one sixth of the times. So the probability is one six, This is an object to measure. The

second measure is called the Bayesian approach, Preferred typically by economists or even

philosophers. Ok so this actually measures degree of belief. 

So if somebody says that there is a sixty percent chance of rain tomorrow what they mean

typically is it looks a little bit more than you know fifty fifty. So it looks kind of likely that I

am going to get about rain a little bit more than I but I am not really sure. So something of

that sort it's a rough estimate. That's something like a base. Yeah of course there are more



technical  meanings  it's  not  as  bad  as  what  I'm making  it  out  to  be  but  it's  a  subjective

measure. So there is a certain amount of degree of belief in the statement that's incorporated

in a Bayesian. 

Now for all purposes you do not really strongly get in a couple of places. We'll make this

distinction but other than that we do not really strongly care about which approach we are

taking because whatever the probabilities result out of this the mathematics works exactly in

the same way. For example, if a doctor says to a person your probability of getting a disease

one let's say heart attack is point one and probability of getting disease two, let us say foot

ache is point two. Ok let's say that these two diseases are independent okay. This is important

in the example I am using. Now regardless of which interpretation of probability you choose.

It is always true that probability of disease one and disease two will leave they even side

independent. You are going to get point one multiplied by point two, which is point zero two.

This  is  regardless  of  whether  it's  a  frequent  test  approach  although  there  is  a  Bayesian

approach. So the mathematics of probabilities work exactly in the same way regardless of

which approach we choose. So we'll stick to you know choosing between frequent tests and

Bayesian depending on what makes sense and we'll only look at what the mathematics of the

resulting probabilities.
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So let's come to a few definitions which we'll be using. The first is the definition of a random

experiment the simple definition of random experiments you do an experiment and it results

in difficult different outcomes each time. Despite you having similar conditions for example I

toss a coin, it seems to me that I am keeping the coin exactly the same way on my thumb in



exactly the same way, and yet sometimes you get heads and sometimes you get tails, such an

experiment is called a random experiment. So rainfall amounts are throwing off dice infinite

examples of this. The second definition is that if a sample space ok so suppose you do a

random experiment all the possible outcomes the set of all possible outcomes of this random

experiment is called the sample space. For example, if you toss a coin the set of all possible

outcomes is you either get a heads or you get a tails. This would be if you are tossing a coin

once. Now suppose I toss a coin twice, Then the sample space is heads heads. Heads tails,

tails heads or tails tails. So this would be my sample space. 

Now one of these four should have a card when I toss the coin four times or two times. Now

what's important is that the sample space which we use for determining probabilities depends

on actually the purpose of analysis. So the same event can be described in many different

ways.  So  let's  say  we  have  manufactured  a  pipe  and  we  want  to  and  knowing  that

manufacturing has certain an uncertain base built into it you are not always going to get a

pipe of the same size each time. 

So we can call this an random experiment. So what I want to describe is the sample space of

what kind of pipe did I get. Now depending on the purpose of my analysis our sample space

S could be either x s s r plus  means the positive half of the real number line. So this is simply

S is some number which is positive. All of us know this. So all we are saying is the diameter

could lie anywhere between zero and infinity. 

This is one sample space. Another possible sample space is the diameter of the pipe was low

or it was medium or it was high. Suppose we are only interested in whether it is in one of

these three. Is it too small. Is it kind of okay or is it too big. If these were our only three plus

quantities  of  interest  are  qualities  of  interest  in  an  analysis.  Our sample  space  would be

simply  this  okay. Or we could be basically  interested  in  is  it  a  satisfactory  pipe  for  my

purposes on unsatisfactory. So my sample  space simply  has  two elements  satisfactory  or

unsatisfactory. 

The point is that you can describe the outcome of the same event in many different ways

depending on which way you wish to analyze it and as an engineer often later on when we

make machine learning models this becomes an important part of what role you play.
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Describing the sample space. We come to a very important quantity. This is a fundamental

quantity often while using probability theory, The idea of a random variable. So it is useful

typically  to  denote  the  outcome  of  a  random experiment  by  a  number.  Now  notice  for

example if I toss a coin my outcome my sample space for example was either heads or tails

heads, By itself it's not a number. Tails by itself It’s not a number. You could assign a number

to it. For example, you could assign the number one two heads and zero to tails. 

Ok so then if you assign one number for example you could even have categorical outcomes.

For example, I take an image I ask is this a cat or dog horse or a picture of a cow. So then you

have four  possible  outcomes  again  cat  dog house cow horse cow are  by themselves  not

numbers but you can assign numbers for example zero one two three or one two three four

etc. 

Ok so you can even assign numbers numerical to a categorical outcomes Ok so the variable

that associates a number with an outcome is called a random variable. Ok so please notice

this random variable by itself is something that is mapped, to either the yellow number or the

integers etc. etc. notation, this sometimes gets confusing for students so please remember this

the variable  itself  is  denoted by a capital  letter. For example,  Captain X would denote a

random variable the variable itself its value is denoted by a small number. For example, if I

say X equals to point 5. X is the random variable and point five is the value that it takes.

Let's take another example. Suppose we want to find out the rainfall on a particular day. So

this is a random variable as you know we cannot say for sure what that exact amount of

rainfall would be. So let's call this random variable capital R. The amount of rainfall would



be actually  denoted  by small  R.  So suppose I  want  to  make  the  statement.  What  is  the

probability that the rainfall is greater than ten MM, So I want to see how to denote this or

what is the notation I would use for this. Remember probabilities denoted by P the amount of

rainfall as a variable is captial R.

The actual value it takes which is ten is denoted by small R. So we would write something

like the mathematical notation is what is the probability that the amount of rainfall is greater

than ten MM. So S are greater than ten. Ok so suppose I ask what is the probability that the

dice give me the number three. I would and if X was denoting the random variable which

gives you the output of the dice you would say something like probability that X is equal to

three. So suppose you have a uniform random variable a uniform random variable is one that

all outcomes are equally likely. For example, you have an unbiased coin. If you throw it you

either get a heads or a tails with a probability point five. So the probability distribution is

called a uniform distribution. 
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Similarly,  for  a  Dice  you  could  have  a  uniform distribution  again,  ok  so  let’s  come  to

probability distributions, A probability distribution tells us how likely a random variable is to

take each of its possible states. So remember a random variable can pick any state depending

on what the sample space is if the sample space has 10 members. Then the random variable

can take all 10 values any of the 10 values not all 10 values simultaneously. Any of the 10

values the probability distribution tells us that not all of them might be equally likely. Some

of  them  might  be  less  likely.  Some  of  them  might  be  more  likely.  So  that  probability

distribution is what tells you how likely each one of these values is. 

So depending on what kind of variable we are dealing with we might have two different types

of probability  distributions.  So very common probability  distribution is  that  of a discrete

random but a very common random variable type. It's a discrete random variable. This has a

finite accountability infinite number of possibilities. For example, if we look at the number of

errors in a particular page or the number of errors i make while speaking or the number of

errors doctor made in diagnosis all these are actual numbers. Ok so these are finite. 

The range of the random variable we can take is actually finite.  Ok so these are discrete

random variables.  Now more importantly  the probability  is measured by what is called a

probability mass function as we see in the next slate. So we can have a continuous random

variable also which has a real number interval for its range. An example would be any real

number random variables such as temperature pressure voltage current etc. In such a case the

probability  is measured by probability density function.  Please notice the difference for a



discrete variable it's a probability mass function for a continuous variable it's a probability

density function. 
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So let's come to a probability mass function. Once again it's done for a discrete variable. We

denote it by PMF standing for probability mass function. All it this is a list of possible values.

Okay so if the random variable takes multiple values it's simply a list of those values along

with their probabilities. So let's say you have a bias dice a bias means not all six sides are

equally likely. So one is somewhat likely two has a different probability etc. 

So let's say we have these six probabilities. Notice how I am denoting this. All I'm saying is P

of  X equal to one equal to point one etc you will see this should be actually true. Please

excuse me. So P of X equal to on this point one P of X equal to his point one etc.. You have to

give a probability for each possible outcome in the sample space. So for example if I take a

graph and have this six possibility strong here which is the sample space please remember

this is X. Then probability that x equals to one is point one. Point one. Point two Point two

point two so this essentially is the probability mass function ok.

Some of you might notice that this looks like a point load which is exactly true. Instructors

who might have seen something of the sort a point force applying at a single point.

So that's what the probability mass function is analogous to. So in order for a probability

mass function to be a valid probability mass function it has to satisfy certain criteria. One

thing is you are to make sure that the domain of P is the set of all possible states of X. All that

means is that P should have some that of some valid value for each output for X. For example



if I don't give let's say these two values and say that P is valid only from one to four then this

is not a valid probability mass function. 

My whole sample space must be covered. Next of course all of the individual probabilities

since they are probabilities how to lie between zero and one they have to be non negative. As

well as they have to be less than one. Finally we know that the whole sample space, So since

one of these X should definitely occur the probability summation of individual probabilities

has to be one. So using these laws you can immediately come up with the fact that for a

uniform random variable which is  a random variable where all  the outcomes are equally

likely.

If there are K outcomes so X I, I goes from one to K. Then a uniform random variable each of

those probabilities will be equal to 1by K. Ok so as I said earlier this is analogous to a point

Load.
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So let's now come to continuous random variables. Remember that instead of a mass function

you  now  have  a  density  function  ok.  D  stands  for  density.  What  it  is  effectively  is  a

probability per unit length, once again you can make an analogy so instead of a point Load.

You now have something like a distributed load since this is a continuous function. We don't

have gaps between any two random variables. 

What we have is a continuous distribution and instead of giving probability at the point what

we will give is probability but unit length or in other words probability density. This is like a

distributed load. So let's say R is the amount of rainfall and I want to find out probability that



the rainfall lies between ten and twenty. As it turns out the probability of any particular point

is irrelevant. What you look for is probability in a range. So let's say you want to find out the

probability that the rainfall is between ten and twenty ok. In that case we simply denoted by P

ten  less  than  equal  to  R  less  than  equal  to  twenty.  These  two  are  equivalent  because

probability of any exact specific value is effectively zero. 

The eighty often Linus effectively zero. So this probability can be given by any under this

curve just like for distributed Load, Load can be given by area under the curve ok. So if you

don't  understand  that  analogy  even  then  you  can  immediately  see  that  each  of  these

probabilities when they sum up if it is probability per unit length then this area is given by

integral of P of X dx between ten and twenty. 

So in general the probability that A will be given by integral between A to B P of X dx. So in

order for P to be a probability distribution function the domain once again just like last time

has to be all possible states of  X ok. And probability density has to be positive. Notice that

it's not necessary for the probability density itself to be less than equal to one because this is a

density.

So let me show an example, So let's say my probability density function looks like this it's a

heart function let's say this is 0, 0.5. Then this value this area has to be one therefore this

height has to be two ok. All I'm interested in is in making sure that the area of any sub portion

has to be less than equal to one because it's the area which is the actual probability. This small

p affects on the other hand is the density. what it is probability per unit length.

So I can arbitrarily make this large by simply reducing the length for the same probability.

Our condition here is of course that integral of P of X dx has to be equal to one. due to way of

thinking about the probability density function is to think of it as a normalized histogram.

Okay so suppose I take a random number which lies between let's say minus five and five and

i take ten thousand such random numbers. So let's say here is the histogram that's drawn.

Notice these values here this value is eight hundred. This values one hundred. So some that I

don't zero you get a lot of hits. 

And everywhere else we get a low number of hits. We can draw a histogram. Now suppose I

normalize this by what I mean by normalization is instead of looking at number of times I got

a zero or a number of times I got a value between that's a minus point one and zero instead of

doing that. I start looking at what fraction I got. So all these numbers if i divide them by ten

thousand what they now will get here is point zero eight. So I had ten thousand tosses which



went between minus five and five. So now I divide all these numbers and I look at fractions

instead of actual numbers. You see that they form a curve of this sort. 

Now suppose I keep on increasing my tosses. You might kind of guess that slowly but surely

it'll start converging to some nice bell curve even see this later. Later on this week such a

curve will usually be a glossy anchor but it will usually converge to some sort of curve that

curve would be the probability distribution function not for a finite number of throws but for

an  infinite  number  of  throws  a  normalized  histogram tends  to  a  probability  distribution

function, Thank you.


