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Hello and welcome back, in this video we will look at bagging continuing from our lecture on

decision trees. So all the figures so in this presentation are provided by Intel software and the

material is inspired from introduction to statistical learning by Gareth James.
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So based on what we saw last time what decision trees they have a tendency to over fit the

data that is it performs very well on training data but new test data sets arrives and the errors

are huge, so basically it is a high variance model, it is another way of looking at it, so it is

high variance. So one solution to prevent over fitting in decision trees was to prune the trees

but it helps reduce variance to a certain point but beyond that it does not help really and the

effects are not very significant, ok. 

So bagging is a procedure that is developed to improve the or to reduce the high variance of

decision trees.
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You will look at how it does, so the idea behind bagging is to train a lot of decision trees on a

given data set ok, so we train a multitude of decision trees and combine their predictions to

reduce the variance right, so if you have this is based on this very simple concept that let us

say you have data points z 1 to z n and your variance on individual data points is sigma

square, so if there are n data points and if you look at the mean the variance of that mean is

sigma square over 1 over n, right.

So as you increase the number of data points you are variance on the mean comes down that

is the concept it exploited with bagging, so you train a lot of trees on a given data set and you

take the average of these predictions if you are training aggression trees or you combine the

predictions for classification some way or the other. 
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So where do we get the data set for training these multiple trees, right because we have only

one data set so ideally what we would like to do is to have multiple measurements and with

each measurement in the centre is a measurement you collect data 100 times and with every

data you collect you train a decision tree however that is typically not possible because you

are generally given a data set or only a set of data is available and you have to grow your tree

based on that.

So the way to train multiple trees is to grow decision trees from bootstrapped samples, ok so

what do you mean by bootstrapping samples? That is what we are going to look at, so there is

this data set this is about this about movies and their budget and the turnover, total gross steak

who is a director of the movie, the rating and so on and so forth. This is a movie data set so

we are trying to make some decision about this based on this data so we will not go into that

detail I just to understand the data set.

So  the  way  we  go  about  doing  bootstrapping  is  to  select  a  subset  of  this  data  with

replacement, so if you look at this particular so the blue area is the sample data, so the idea

behind bootstrapping is to sample your given data with replacement to create a new data set.

So if you look at this particular movie database detail so there are 17 data points and we are

selecting a subset of this data marked in blue right with replacement, so we do it let us say

capital B number of times.

So B bootstrap samples are generated and we use each one of these B bootstrap samples to

train a decision tree and use the output of the decision trees let us say as an average or a



voting scheme to get at  the desired result.  So the way it  works is so if  you look at  this

particular  realization  we  have  a  different  subset  marked  in  blue  here,  we  have  another

realization  of the data  that  is  sample of the data  with this  which is  sampling  a  different

portion of the data here as well as in this case another sample of the data.

So you can sample different subsets of the data with replacement and with each subset you

can  train  a  decision  tree  and  use  the  output  and  average  the  output  for  classification

regression and some voting scheme for the decision making.
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So if you do that what happens what is the nature of the data sets that we get when we do this

kind of sampling? So on an average let us say if you have this is in this plot you see this axis

basically the number of bootstrap samples so each time you select 10, 20, 40 or 80 or 100

samples from your data and this is the probability of a particular data set data point not being

present in the data ok, so that is given by this expression here 1 minus 1 over n raised to n.

So if you look beyond a point as you as a number of bootstrap samples increases, so we see

that typically every bootstrap sample contains two thirds of your original data and one third

of your original data is not present in the samples on an average so that is the makeup of your

sample data. Now this again this is possible because we are sampling with replacement so

just to reiterate as you increase the number of bootstrap samples you see that the number the

percentage of data left out is like what one third, so one third is not selected typically your

bootstrap samples are made up of two thirds of original data, so this refers to the individual

data points, right



So we will use we will exploit this fact to do error estimation later on but we will just see

how we can go about doing this using these bootstrap samples for training decision trees and

obtaining an output.
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So we have let us say in this illustration we have about multiple trees ok and each of those

trees are trained on one of the bootstrap samples, bootstrap data sets and there is an output

corresponding to each of those trees. Let us say this is a classification task so each one of

these trees outputs let us say it is a binary classification, so we are looking at either red or

blue right, so each one of these trees outputs for a particular data point it outputs the decision.

So two of the trees said red and one tree said blue ok, so then you can so for a classification

task you can just do maximum or the voting scheme so since two red gets the maximum

number of votes you would classify that particular data point as right, ok. So similarly we can

do this for all the data points, so for every data point so each one of these columns is a data

point so every data point each of these trees will output a certain category red or blue and we

assign a category which gets the maximum number of votes.

So as you go along the rows as you go along the columns each column you will select the

category which got the maximum number of votes, ok so this is for a classification task, so in

the end you will get a single classifier ok. There is also for instance regression wherein you

will just get the take the mean, mean or the average ok, so there are many ways of going

about this if you think about it let us say think of a classification task then based on the output

of the individual decision trees you can formulate these output probabilities which is nothing



but so let us say there are three classes then you can have the probability of class 1, class 2

and class 3 and each as the fraction of the trees which what which gave this as output class 1

as output, right.

A fraction of trees that gave class 1 as output, so people there is it I mean you can do it this

way but the better way would be to actually get the raw probabilities from the output of the

tree itself right, so for instance each three will output a certain class with the probability that

you can calculate ok based on the leaf which is it is aware to which it is assigned and you can

actually take the average probability over the leafs of every one of those trees and use that as

to classify into a particular class ok but this is even though this is trim you know appealing to

do and the better approach would be to directly estimate the probability from the output of

each of the individual trees and then average those probabilities instead.

In this case we are considering the fraction of trees that give a particular classes output ok. So

in the end so what are we doing we are bootstrapping our data set and with each bootstrap

sample we are building decision trees and aggregating the output of those Bayesian trees, so

it is bootstrap so bagging is nothing but bootstrap aggregating, ok. So that is the idea behind

bagging and the what it improves is the high variance so it brings down the variance in your

model because decision trees tend to over fit.

So having multiple a multitude of decision trees strain on the similar data will give you a

better average output.
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So one of the ways of calculating the error or validating your machine learning algorithm as

we have seen earlier  is  the  cross  validation  that  the  k cross  k  fold  cross  qualifier  cross

validation rainfall cross validation, it is kind of difficult to do as you can imagine with the

bagging approach. So what would be the typical approach taken in for when you are using

bagging, right. 

So we saw that about one third of the data samples are left out on an average when in every

bootstrapped version of your data set, so once you have created a tree based on a subset of the

data you can measure the error on the unused samples, so ok. So let us say you have about

100 trees right ok so let us say 30 trees do not use data point some data point I will call it X

40 or something so let us say you have 120 data points X 40 is one data point X subscript 40

is one data point and 30 of those trees do not use that so then you will evaluate the error on X

40 on those 30 trees individually and average them, ok. 

So that will give you so you can for every subset of trees that do not use a particular data

point you can use those trees to evaluate the result for that data point and use that average as

a measure of the error in your algorithm, right. So this can be root mean square error if you

are  doing  a  regression  task  or  the  classification  error  in  case  of  a  k  fold  or  a  twofold

classification, ok. 

This procedure is called the out of bag error estimation correct, so that is one of the this is one

of  the  advantages  of  using  bagging  so  you  do  not  have  to  specifically  do  k  fold  cross

validation you just have to identify data points that are not used in subsets of the decision

trees that were used for the bagging procedure and you evaluate the error using only those

trees on that particular data point.

So you can like that you can identify on almost one third of your data set on an average it is

not being used in one tree or the other, so then you can use you can accumulate their error

overall those data points and calculate an average ok, that gives you either for classification

or for regression.
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Similarly you can do a same procedure for feature importance right, so feature importance

can be either measured using the classification error or typically the Gini index will give you

the measure of feature importance what do I mean by that is we saw that we are looking when

we are trying to do the split at every node in a tree we are looking at we are choosing features

based on the largest change in the Gini index or the entropy you are the classification error.

So if we can identify so it is the same procedure as before but we on the unused data set but

we will use instead of accommodating the error we will accumulate Gini index change and

average that overall the trees ok, so that way will give you a good idea of which feature is the

most important. So recall that it is much easier to do this if you have a single decision tree

because at every node whenever there is the whenever there is a split you know the change in

the Gini index or the entropy that you or whatever criteria that we have used to make the split

and you can use that as a measure of feature importance ok but when you are doing a bagging

there is when you are averaging over a multitude of trees maybe several hundred of them and

then it is very difficult to do that in a straightforward way.

So because the data set will keep changing between trees typically so then we just have to do

a similar procedure that we did for calculating the output of the tree so instead of averaging

over the root mean square error or the classification error you look at the Gini index and you

average over that for every feature using data points that were not there as the training data or

in the data that was not used to make that tree, ok.



So it you can use do that for recall that when we were talking about when you are talking

about  this  decision  trees  we  also  looked  at  something  called  feature  importance,  so  we

figured out that the feature that was the most pertinent to the task at hand was the one that

gave the biggest information gain ash measured with the Gini index for instance ok. So this

was our way of figuring out the most significant features in our data, right.

So when it comes to bagging it is not one decision tree that we are looking at we are looking

at what 100 of trees and then it is very difficult to make this decision how do we figure out

which is the most feature important feature right, so here again we do exactly something

similar  to what we did earlier  for calculating the out of bag error so we will  look at  the

average information gain, right so we look at the average information gained overall the trees

for that particular feature and that gives you an idea of if that feature is very important or not,

ok.

So it is a during the process of training like we saw we take bootstrap samples and train every

tree with it for every tree and whenever we make a split on the data based on the information

gained we keep track of the information gained for that particular feature across all the trees

whenever that feature is used and we take an average of that and that gives you the feature

importance when you are using bagging as a (clas) for classifying right or even for regression

right.
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So are typically bagging performance increases with the number of trees ok, so if you have

about 100 or more stated in many text books and on resources that per 100 trees should do it



ok  they  should  be  able  to  get  a  good  average  and  since  you  can  reduce  the  variance

significantly if you use about 100 trees to fit your data ok and of course you can always

measure the error using out of bag error and you can also look at a feature importance just by

even averaging across the trees.

(Refer Slide Time: 18:37) 

So the advantages of bagging they are same as decision trees they are easy to interpret and

implement  ok,  you  do  not  have  to  do  any  pre-processing  especially  for  bagging  right

whatever pre-processing you do for to the data centering it at zero unit variance those things

that you do for the data remains the same, so all that there is no extra data pre-processing or

anything of that sort and of course doing bagging improves the variance,  so there is less

variance in your output and training multiple trees can be done in parallel because they are all

done independently, there is no correlation in their training.

So in that way you know one the training of one tree dependent does not depend on the

training of the other so you can train multiple trees simultaneously of course you have to

implement them in in a certain programming construct so that there is no this can be done

very  quickly  right.  So bagging is  a  very useful  tool  to  have  especially  if  you are  using

decision trees and many of the python packages come with it so you can try is scikit learn or

any other module python module that offers bagging inbuilt.

So we have looked at decision trees and we also now looked at bagging which is basically

just exploits the fact that if you average over a large number of trees then you get a better

variance  but  the  problem still  exists  because  if  you  see  we  are  sampling  the  data  with



replacement and the process for growing the trees remains the same, so if you consider a

situation where in a certain feature let us say in this case a director ok of the movie in this

case in this data set has a significant impact on whatever classification that you are trying to

do with it and that is this is the most important feature.

So even though you are selecting bootstrap samples of data the first split is going to be on the

director right, so that way all the trees that you trained or correlated and if you average over a

bunch of correlated variables then you are then you do not get such a huge reduction in

variance ok, so that is not great so if a data set is like that that where in a certain feature has a

huge impact on the classification output then it does not really help.

So to alleviate that problem we will look at what are called random forests ok and random

forests or just another variation of this not it is not exactly a variation but random forests

what you do is the same thing you train a lot of trees but then you will not only select the data

points  at  random  will  also  select  the  features  at  random  and  that  helps  to  weaken  the

correlation between the trees that you train and improves your output, ok.

So we have looked at look at this in slightly more detail and following random for us we will

also look at a gradient boosting or and adaboost and these techniques are also generally very

powerful for improving the accuracy of whatever classifier that you might be using, we look

at these in the next few videos, thank you. 


