
Machine learning for Engineering and Science Application
Professor Balaji Srinivasan

Department of Mechanical Engineering 
Indian Institute of Technology Madras

Long Short Term Memory 

(Refer Slide Time: 00:13)

Welcome back in the previous video we saw some variations of the RNN structure using GRU

gated recurrent unit GRU of course I a recent version 2014and we saw that by introducing new

weights  and  a  slightly  more  complicated  structure  we  could  probably  handle  the  vanishing

gradient  issue,  so  GRU  of  course  was  not  the  first  architecture  to  handle  this  the  oldest

architecture to do that was LSTM in 1997 and this is still the industry standard I many ways

though as you will see the structure is slightly more a bit more complicated than GRU but not by

very much if you go the ideas in the previous video the LSTM idea should also be fairly clear.

So what is LSTM, LSTM is stand for as I had said in last video long short-term video memory,

so remember the short term sits together and LSTM was the first architecture to use the idea of a

separate  memory  cell  so  when we were  dealing  with  GRU or  the  simplified  GRU we had

something like HT I F times HT minus one plus lets us say one minus F times G, where G was

the output of vanilla RNN and the idea there was to retain some portion of you old calculations

into other new ones in the case of LSTM we will be actually using a separate cell all together this

is a memory cell,  so heuristically this is sort of like having some numbers you retain it in a



separate memory back and while you are calculating with some other numbers, so I will just

show you the formulation.

So we write CT notice the analogy with what we had before is F times this is once again the

Hadamard product or the element wise multiplication product F times CT minus one plus I time

G where I is now called the input gate FS like last time it is called the forget gate, so the ideas are

very-very similar once again we want F to belong to zero one similarly I should also belong to

zero one but this gives you only see T what happens to H, H is the output that we are actually

interested in H is now given as O times tan H of CT and O once again is another valve or another

gate which also belongs to zero one and it I called the output gate.
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So now we have three gates FIO and we also have to predict G so just to write a summary of

how we calculate LSTM, LSTM is calculated as HT id O times tan H of or some other non-linear

of CT where C is the memory and CT itself is calculated as F times CT minus one plus I times G

and now all this parameters need some definitions and these definition you could probably write

down intuitively eve before I do and I would recommend that maybe you pause the video and try

it once just to make sure that you have understood things but I will quickly write them down in a

second so these ideas are very similar to the once we had used in simplified GRU and even in

GRUR so the idea is simple since O has to belong to zero one you say O is sigmoid of some ZO.



Where  Z will  be  a  linear  combination  of  what  came in  similarly  F  will  be  sigmoid  of  ZF

similarly I the input gate will be sigmoid of some ZI and G being the output of a vanilla RNN is

simply tan H of ZG , now what are these ZO ZF ZI ZG we can write them down pretty easily ZO

will be WO HT minus one plus UO XT, similarly ZF will be WF HT minus one plus UF XD, ZI

is WI HT minus one plus UG XT and finally ZG is WG HT minus one plus UG XT all these put

together give you LSTM.
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Now if you see LSTM it has how many unknowns you know what ever be the size of the W

matrices you have 8 unknown weight matrices just for comparison plain vanilla RNN and just

has two weight matrices.

Now if you recall when we were doing back propagation through time we had to find out both

this weight matrices including of course the output matrices I have not talked about that here but

if you have output you have to find out that propagation for that though the output matrix back

prop as you had seen in the back propagation through time was straight forward now if you use

all these eight you will have to do back propagation for all eight of these matrices so that what

will change and if you simplify GRU we saw that there were six matrices etcetera and sorry

simplified GRU had four and GRU had six matrices.

So it is just a question of how much expenditure you are willing to bear , now LSTM typically

can trained or can retain non vanishing gradient for greater number of layers compared to GRU



and GRU typically can retain greater number of layers compared to vanilla RNN and so this is

remember when I say LSTM greater what it means is the number of layers that you can train

with LSTM the depth of the architecture can be greater with LSTM compared to GRU and that

compared to vanilla RNN and that you have to balance against typically the number of weights

that you have to train, so of course this is also true of non-vanishing layers that you can train plus

time taken for computation.

So LSTM will typically be more difficult to train in term of computation time it will take greater

time for you to train and it will also take you slightly more time to run because it has more

matrices in there,  so everything is grater about LSTM now typically  a rule of thumb that is

suggested at least in modern days meaning just as or four years is that you try vanilla RNN task

and if it is a small number of layers if that works well enough good otherwise try GRU on a task

and if that work at well enough good if not then try LSTM of course depending on what peoples

priority are many people typically tend to use LSTM of the bat.
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So that  is  certainly  a possibility  now just  to  repeat  the exercise that  we did with GRU and

simplified GRU I will also draw sort of the diagram for LSTM remember now that we have not

only HT and XT coming in into these box which is finally going to spit out sorry there should be

HT minus one, HT comes out but not only that you also have your memory cell or memory

computation so we also have CT minus one coming in and CT going got and so on and so forth.



So CT progresses HT progresses and there is some processing that happens inside which was

given by our formulation above now what was that HT minus one and XT combine as usual to

give our vanilla RNN output now CT minus one if you remember there is valve here it looks like

infinity but it is actually evolved so I gets multiplied by G the forget gate gets multiplied by CT

the two combine and this is what gives us CT as output, at the same time the same CT comes

down here you run it through a tan H, run it through the output gate and what you get is HT.

So this is simple schematic of LSTM now this can be shown an very different complex ways but

I like this because this kind of tells you what the mathematics is doing sort of in a simple way

you can also see several version of this online each person has their own diagram of LSTM GRY

etcetera,  I  prefer  this  you  do  not  really  have  to  learn  it  is  for  those  people  who  prefer

visualizations to arithmetic or algebraic formulae, so LSTM is the industry standard for RNN’s

you can blindly use LSTM more or less today for any RNN task that you see a warning is that it

takes a long time to train for many-many most of the language task that we are interested in

thank you.


