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In this video we will be looking at the final piece of the linear algebra portions of this course,

specifically we are going to look at matrix operations, some special types of matrices and

matrix  decompositions,  specifically  within  matrix  decompositions  we  will  be  looking  at

Eigen Decomposition. Now all these ideas are ideas that you should have been familiar with,

please remember this is just a recapitulation of the kind of things that you need to know for

this course. 



(Refer Slide Time: 0:48) 

If time permits we will look at greater physical interpretations of this, but by itself linear

algebra is a vast subject.  So why are we looking at  matrix decomposition also known as

matrix factorization? To remind you in previous videos we had seen that matrices transform

one vector to another. So if you pre multiply one vector by a matrix you get another vector.

Now this has physical meanings which we will look at as we go on through this lecture itself. 

So typically as you remember we deal with very high dimensional vectors and tensors within

machine learning, you might recall that if you have a 60 cross 60 grayscale image you can

interpret it as if it is a single 3600 dimensional vector or one vector with 3600 components

you know pixel 1, pixel 2, up till pixel 3600. So these are just examples of the size of vectors

that you will be dealing with which means we are actually dealing with very large matrices.

So if we have to convert an n cross 1 vector into another n cross 1 vector, so if you have a

vector v let us say this is n cross 1 and this has to go to another vector let us call it w which is

also n cross 1, you will have to pre multiply by a matrix which is n cross n, okay which

means if let us say n is 3600, then A is 3600 cross 3600 matrix, okay. Now it is usually useful

to understand you know what these components mean and as it turns out its original form it is

kind of art to understand and just like you know for a number we typically take let us say if

you have something like 91, you will say 91 is 13 times 7, both of these are prime indivisible

further factors.

Similarly it is useful to factorize a matrix itself and you can think of an Eigen Decomposition

or other decompositions that we will be talking about as simple decomposing one big thing



into smaller thing which we can understand a little bit better. It is also useful sometimes for a

large matrix to be summarized by 1 or 2 or a fewer numbers rather than a large numbers. So

we have seen that norms for example for a matrix we often use atleast within this course we

will be using the Frobenius norm. So norms would be all this n cross n reduced to a single

number, okay so mapping from an n cross m or m cross n to a single number, so that would

be the norm.

Another  such  measure  is  trace  all  these  are  smaller  measures  obviously  they  do  not

summarize the whole matrix, a determinant which you will be familiar with, eigenvalues,

singular values, etc are similar numbers which try to encapsulate some idea about what the

matrix represents as we will see later on in the slides.
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So the first idea we are going to look at is what is called trace of a matrix, it is simple a trace

of a matrix is simply the sum of the diagonal elements of the matrix, okay. So it is sigma A ii,

so if you have a matrix let us say 1 2 3 4 5 6 7 8 9 then trace of this matrix A is 1 plus 2 plus 3

which is 6 as shown here. Now the idea of trace you can use for non-square matrices also, so

let us say this is longer you had 10 11 12 1 2 3 etc you would still look at only A ii which are

A 11 A 22 A 33 it would still be 6, okay. So typically however we will be using trace for

square matrices.

So the trace has certain properties, trace of A plus B is trace of A plus trace of B, trace of A

times B is trace of B times A even though even if AB is not equal to BA the trace itself is a

property that does not change when you commute the matrix product. Similarly trace of A is



the same of trace of A transpose which directly follows from its definition these are some

useful properties. 
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The next idea is that of a determinant of a matrix again you will be very familiar with this I

just want to make the notation a little bit clear nothing much else in this slide. So we all know

that if you take a 2 by 2 matrix you can simply define the determinant as a 11 a 22 minus a 21

a 12 and that the determinant of a bigger matrix is using kind of a recursion idea, so if you

have something like A 11 here then and if we call this sub matrix a, then determinant of A is

defined as summation over the rows or columns we can do it either way as you know minus 1

power i plus j A ij times determinant of this is the sub matrix, okay again this is something

that is very very familiar to you from school.

Now more importantly the determinant actually represents the volume so if you interpret the

first column let us call it a 11 a 21 a (1) n1. So if we call this v 1 vector, this as v 2 vector so

on forth up till v n vector for a square matrix then so let us take a simple case, so if I have 1 2

3 4 I can now think of this as two vectors the 1 2 vector v 1 vector, another v 2 vector in that

case the determinant represents the area of this parallelogram, okay.

So similarly you can extend this to higher dimensions also if you have 3 vectors it will be the

volume represented by those 3 vectors 4 5 6 you can start interpreting this as n dimensional

volume so this has a very interesting consequences as we will see shortly.
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So one thing is invertibility of a matrix again as you know A inverse is defined only if you

have determinant  of that matrix  A as non-zero.  So A has a unique inverse if  and only if

determinant of A which we will sometimes denote as if its absolute value is not equal to 0.

Now this automatically means that the columns of A have to be linearly independent, how

does this follow?

So remember I will use the same example as last time, suppose we have a 11 a 21 up till a n1

if we call this v 1 vector, v 2 vector is a 12 so on and so forth and we have v n vector which

goes till a nn. Now in case one of these columns let us say this column let us say v n vector

could be written as a linear combination of this was some alpha 1 v 1 plus alpha 2 v 2 up till

alpha n minus 1 v n minus 1, then what does this mean? By simply doing an operation of nth

column goes to nth column minus this thing, you will get all 0’s this transformation as you

know preserves the determinant which means the determinant will become 0, okay.

This also has a nice physical interpretation, what it says is if you have one of these vectors

which can be represented as a linear combination of the other vectors the volume of the thing

formed  by  of  the  parallelogram  or  the  parallelepiped  formed  by  these  vectors  actually

becomes 0, you can see this easily in the 2D case or even in the 3D case. So let us say you

have two vectors in this case you only have a 2 by 2 matrix, okay. In case one of them is

linearly  dependent  on the other, it  simply means that  both these vectors  or  one of these

vectors let us say v 2 is equal to 2 v 1, then the area formed by these two vectors is simply

going to be 0, okay. You are going to get non-zero area only if one of them is not simply

scaling of the other.



Similarly if you have three vectors, if one of them is the linear combination of the other two

vectors it means all three are in the same plane which means they are not going to form a

non-zero volume. So there are multiple interpretations for A inverse existing and there are

deep connections with the determinant of the matrix.
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So we will now look at some special matrices and vectors again this should be familiar for

you. The first  idea is that of a diagonal  matrix,  a diagonal matrix  is  one where only the

diagonal entries are non-zero, okay all other off diagonal entries are 0. So mathematically D ij

if D is the matrix is equal to 0 if i is not equal to j. A symmetric matrix is a matrix which has

you know it is symmetric across the diagonal, another way to say it is that the matrix is equal

to its own transpose.



A unit vector is a vector with as all of us are familiar unit length. In our notation which we

remember we had used the idea of a norm for length. So typically norm of that vector is equal

to 1, which norm if you ask typically when we say unit vector we mean the 2 norm, okay

please remember the 2 norm or L 2 norm is simply v 1 square plus v 2 square so on and so

forth up till v n square, square root, okay but you can define a unit vector with norm 1 etc but

it is usually the 2 norm that we use.

Another (usual) useful idea is that of orthogonal vectors, it simply means vectors that are

mutually perpendicular which means x if x and y are mutually orthogonal mean x dot y is 0,

which remember can be written in this matrix form you take x transpose y and set that equal

to 0. We also have the idea of orthonormal vectors or orthonormal vector set, where you have

unit vectors that are perpendicular to each other.

Orthogonal matrix is a matrix whose transpose and inverse are the same thing, which means

A transpose is equal to A inverse, the simplest sort of orthogonal matrix is the identity matrix,

it has some nice properties which we will discuss very shortly, but a simple thing that follows

from this is that A transpose A and AA transpose is equal to I, this also means that all columns

are orthonormal. 

So remember if (A is equal to) A transpose is equal to A inverse when you multiply the matrix

by its transpose you are actually going to get quantities of this sort which have to be 0, if x

and  y  are  not  the  same.  Now  where  do  we  use  orthogonal  matrix  even  though  this  is

orthonormal column vectors we still call it orthogonal matrix, an orthogonal matrix typically

can always be thought of as a rotational operation, okay what that means is if I have one

vector I pre multiply it by something and all it does to that vector is simply rotates it without

changing the length, the matrix which should have been used would always be orthogonal

this  can  be  proved  we  will  not  have  time  to  show all  that,  but  please  do  remember  it

whenever you see an orthogonal matrix please think a rotation matrix, okay that is another

way to think about it.
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So let us now come to the matrix factorization that I was talking about Eigen Decomposition.

This is typically very useful for square symmetric matrices specially square symmetric real

matrices even though you can use it for other matrices as well and I am sure you would have

done it before. As far as this course is concerned, we will primarily be using it for square

symmetric matrices and it has we are guaranteed several things, when symmetric matrices

when we have square symmetric matrices as far as Eigen Decomposition is concerned. 

So here is  the simple physical  meaning that  is  usually  useful  in order for you to anchor

yourself in the Eigen Decomposition. So every real matrix, remember I have talked about this

before too if you have a matrix A, what it  can do for now I will  talk only about square

matrices. So if you have a matrix A if it (multiplies) pre multiplies a vector v, it results in

some other vector w.

Now you can think of A as a machine or an operator acting on v and giving you w, takes v

takes it to w, okay. So let us say this is the vector v, this is some vector w and A has taken v to

w. Now through physics as well as intuitively you can see that there are only two things that

this matrix A can do to v, it can rotate it that is it can turn it through an angle even in 2D, 3D

in any place that you can think of it turn it through an angle and the other thing it can do is it

can change its length, okay.

So the length of v might not be the same as length of w, but it can stretch it, rotate it or rotate

it and stretch it these are the two operations that any matrix can do as far as acting on another

vector’s concern. Now this is extremely useful now if you can think of every operation as if it



is a matrix, then there are special vectors and the only thing that matrix will do to this vector

is just stretch it.

Eigenvectors are those special vectors, so you are given a matrix A and there are a set of

special vectors for that which we will again call v eigenvectors which will only stretch under

the action of this matrix. What is an eigenvalue? Eigenvalue is the factor by which this vector

stretches, okay. So mathematically I would write A times v is a new vector this is the new

vector w but this w is not rotated it is only stretched. So Eigen Decomposition is that angle in

some sense or that set of vectors which only stretch under the action of the matrix A, this is

the physical interpretation, okay. 
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So let us say so we will now write the Eigen Decomposition, you can think of eigenvectors in

some literal sense eigenvectors are essentially the coordinate system in which the matrix A

looks the nicest it looks diagonal this is one way of looking at it if you do not understand this

fact that is okay I will just write the mathematical expression right now. So let us say A has n

linearly  independent  eigenvectors  that  is  A is  n  cross  n  matrix  and  it  has  n  linearly

independent eigenvectors v 1 through v n.

Now we will do what we have been doing so far, I will write v 1 as if it is the first column, v

2 as if it is the second column remember v itself is a vector therefore it has n components and

we will go till v n which also has n components. Now you concatenate or put them together

and you get one large matrix the eigenvector matrix V. So this notation here if you have a



curly bracket it is a set if I put this I have put them together, there is no comma separating this

this is actually a set of numbers put together as a matrix.

Now similarly if each of these has a corresponding eigenvalue lambda 1, lambda 2, lambda n

and I put them together into one giant matrix lambda which is a diagonal matrix remember it

is a diagonal matrix so all off diagonal elements are 0, then we can write the factorization of

A as A can be written as a product of 3 matrices V multiplied by this diagonal matrix lambda

multiplied  by  V  inverse,  physically  what  it  means  is  we  have  sort  of  rotated  into  the

coordinate system which is defined by all these eigenvectors and these eigenvectors purely do

stretching, okay.
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So  as  I  said  before  all  matrices  can  be  thought  of  as  rotating  and  stretching  vectors.

Eigenvectors are those vectors that are simply purely stretching. Now what we know is real

symmetric  matrices  and this  is  where  we will  use  them have  real  eigenvectors  and real

eigenvalues, okay this is not necessarily true of all matrices even if you have a real matrix

and it is not symmetric, it might or might not have real eigenvectors and real eigenvalues,

okay.
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In case you do have a symmetric matrix there is a nice factorization for it, remember we have

V lambda V inverse in the case of a real symmetric matrix you can write it as Q lambda Q

transpose, where Q transpose would be the same as Q inverse which means Q is orthogonal

that was our definition of an orthogonal matrix which also means Q is a rotation matrix. So

physically what this means what this factorization means is so if I have A v and I am trying to

determine what the action of this matrix A is on v and let us say A is a symmetric matrix, we

know from here that I can write it as Q lambda Q transpose v, okay.

So let us say we have some eigenvalues or an eigenvectors, what this action does what Q

transpose v does is it rotates v into the direction of the eigenvector, okay so that is what it

basically does. So you have two actions going on there is rotation and then there is stretching,

so  what  the  Eigen  factorization  does  cleverly  is  this  rotation  is  first  rotated  into  the

eigenvector directions, then you stretch it through the lambda and after that you rotate it back

so that the net rotation and the net stretching are put together into one matrix A and which can

be written as Q lambda Q transpose. 

So this of course will take a lot of visualization, I just sort of summarize it, if time permits we

will give some bonus videos towards the end of this course so that you can visualize it too

and maybe we will give some bonus codes that you can run to see this. So one important

thing for us to remember is the Eigen Decomposition might not be unique. For example if

you have the matrix the identity matrix, so let us take a 3 cross 3 identity matrix for the

identity matrix every vector is an eigenvector, why is that?



Because the identity matrix has only one action, it does not even stretch it basically keeps the

vector as it is you can think of it as a stretch by a factor of 1, I could also make up another

matrix let us call it A, so there is no rotation at all for this matrix A all it is doing is stretching

and it will do so for every vector.

Now one can think of a counter part for this if we think of a rotation matrix it is not going to

have stretching at all, it will not have stretching at all which means really speaking that you

cannot really have a real Eigen Decomposition because an Eigen Decomposition only tries to

find out those vectors which are actually going to purely stretch so if I have a pure rotation

matrix or a pure orthogonal matrix it is not going to have a real Eigen Decomposition, you

can try this out for yourself. 
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So we are going to look at one very important idea that of a quadratic form, okay. Remember

when we are trying to find out the length of some vector let us say x, the 2 norm is square

root of x dotted with x and if I look at 2 norm square that is going to be x 1 square plus x 2

square up till  x n square which I can write as x dotted with x or x transpose x. Now the

quadratic form is a slightly weighted form of this, I will show you what I mean by that it is

written as x transpose Ax.

So let us look at what this means. Suppose I have A as n cross n matrix and x as n cross 1

vector then x transpose is going to be 1 cross n which means all put together you are going to

get a 1 cross 1 number which is a scalar. So a quadratic form is something that takes a matrix

or takes a vector x and gives back a scalar much like the length plus except it has a factor of

A in between.

Now what does this  do, if you write it  out if you write out this  matrix product you will

basically get combinations of all sorts of terms. For example let us say if x vector is x 1, x 2

and A is A 11 A 12 A 21 A 22, then x transpose Ax is simply going to be x 1 A 11 x 1 plus x 1

A 12 x 2 plus x 2 A 21 x 1 plus x 2 A 22 x 2, okay it is a sum of every possible you know

linear combination of this as I have written here x i x j A ij a simple summation of that is

called the quadratic form we will see several uses of this as we go on through the course.

Now one important definition that sort of comes from the quadratic form is that of a positive

definite  matrix.  A positive  definite  matrix  is  any matrix  that  has  all  completely  positive

eigenvalues,  we also have  another  definite  called  positive  semi-definite,  a  positive  semi-

definite means not just greater but greater than equal to 0. A positive definite matrix has very

nice property which is all quadratic forms so if you take any x at all it does not matter which

x you take it is your choice x can be positive or negative, which ever x you take x transpose

Ax will always be positive. 

A simple example is the matrix A’s identity, notice identity is already a diagonal matrix 1 1 1

which means lambda all eigenvalues of identity are 1 which means it is a positive definite

matrix since all are positive, this will give us x transpose Ix since I is the matrix is the same

as x transpose x, so this is always positive as you can say. So for all x of course for all x not

equal to 0 if I multiply it by 0 of course it is trivially 0, so a positive definite matrix has the

property that for all non-zero x, x transpose Ax will always be positive. 



A positive semi-definite matrix has the property that for all x, x transpose Ax is greater than

equal to 0. So you could have non-zero x which give x transpose Ax is equal to 0. So you can

see a simple example of this let us say a matrix B which is 1 1 0, we can find out some x

transpose Ax or x transpose Bx which is equal to 0 for x is equal to 0 0 1, okay this is a non-

zero x but if you multiply it this term will be 0 if you write it out in this way you will you can

automatically check that x transpose Ax or x transpose Bx is equal to 0 even when x is not

equal to 0. 

So  similarly  you  can  define  negative  definite  and  negative  semi-definite  matrices,  so  a

negative  definite  matrix  has  all  eigenvalues  less than 0,  negative  semi-definite  means all

eigenvalues are less than equal to 0 and similarly the quadratic form x transpose Ax for a

negative definite matrix will always be less than 0 and for a negative semi-definite matrix x

transpose Ax will be less than equal to 0. 
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Finally we come to another decomposition, we will not be using it very often in this course

but it is a very useful idea and it is a useful idea when we discuss decompositions, this is the

generalization of the idea of factorization that we have just used you can think of it as a

generalization of the idea of the Eigen Decomposition itself, but we can apply this idea to

non-square matrices, okay.

So factorizing matrices we had done it based on stretched and rotation, so is the same idea

which is applied for singular value decomposition also. So let us say A is m cross n matrix, m

which is not necessarily equal to n so it can be a non-square matrix. So then you can write the



factorization of A as UDV transpose, where each of these have the following properties, U is

a m cross m matrix, okay so remember A is m cross n, U is m cross m, V is n cross n, so

obviously if we need to match the sizes we need a m cross D is a m cross n matrix, okay.

Now U and V have properties remember both of them are orthogonal which means both of

them are can be interpreted as rotation matrices, D is a diagonal matrix by diagonal what does

it mean it means that only the diagonal entries are non-zero in case it is not square even these

elements will be 0, okay so off diagonal entries are zero that we know for sure. Now there are

certain terminology here, the elements of U this matrix U are called the left singular vectors

and they can be calculated as if they are eigenvectors of AA transpose. 

Now notice one thing about AA transpose in case A is real, AA transpose is symmetric and

since it is symmetric we know if it is real in symmetric then it has real eigenvalues and real

eigenvectors, okay so this will always be real U's elements will always be real for any real A.

Similarly elements of V they are just a switch they are eigenvectors of A transpose A and they

are called the right singular values.

The non-zero elements of D the elements here are given as the square root this is the square

root of the eigenvalues of A transpose A, okay so these are called singular values. A singular

value decomposition has very similar not the same but very similar interpretation to what I

talked about in terms of the interpretation of the Eigen Decomposition you take a vector

rotate it into by the V transformation you rotate it and D simply stretches and then you rotate

it back, okay.

So you can think of any matrix A as again doing simply a rotation as well as stretching and

that is the significance of a singular value decomposition atleast as far as we will discuss

singular value decomposition often called SVD as far as this course is concerned if  time

permits towards the middle or end of the course we will probably provide a few bonus videos

with  which  you  can  actually  visualize  Eigen  Decomposition  and  singular  value

decomposition.

This ends the discussion of linear algebra atleast the separate discussion of linear algebra for

this course, in the next series of videos in next week we will be looking at probability which

is the next half of mathematics (that we are) that we require for this course, thank you.


