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Training RNNs

Welcome back. In this video you will be seeing how RNNs are trained. You will see that there

are several commonalities between RNNs, and let us say CNNs and even ANNs, as far as

training them is concerned. Of course, as usual you should have a training set, a validation set

and a testing set. But that apart, given the particular structure of the RNN's, there are few

certain things that you need to be aware of in terms of training. So we will just go through

those in this video. There are several even deeper ideas that need to be conveyed, that we will

not do, okay.
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So in terms of implementation, luckily all the training has been abstracted into the various

packages whether it is MATLAB or whether it is tensor flow or whether it is pie torch, etc.

But  there  are  a  few ideas  that  will  help  you later  on when you will  try  to  train  RNN's

yourself. So the 2 issues that we will be concerned with in this video is 1st calculating loss in

an RNN. There is a mild difference between what happens in an RNN and what happens in a

CNN or let us say an ANN. The 2nd issue is what is called back propagation through time.

Sometimes simply called BPTT.
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So  we  will  be  looking  at  this  from  the  overall  view, I  will  not  be  doing  too  deep  of

mathematics, this little bit of mathematics, we will be doing this. And hopefully this will give

you some insight into what actually goes them into the code when it tries and trains RNNs.

So, 1st let us look at the loss function for an RNN. So let us see a simple structure. So, as

usual you have some X0 going in, let us say we have unrolled an RNN through many many

layers. So let us say the total number of layers is equal to capital T.

Why capital T? Because we are thinking of RNN as something that goes through time, so let

us say this is T1, it is the 1st instant, T2 the 2nd instant, T3 3rd instant, so on and so forth and

let say we are going to H capital T, okay. Now a question with an RNN usually is, where are

we going to take out the outputs? And as we saw in the introductory videos, you have several



choices, it depends on really what you want. In some cases you will be taking out an output

only  here  but  there  are  several  possibilities  where  or  several  cases  where  you might  be

interested in let us say finding out outputs at all intermediate layers also.

So just for consistency, I will call it Y hat, because that is what we had been calling our model

or predicted values so far. Okay. Now when you have multiple predicted values, so let us take

the example of, let us say having 10 days before is the weather of X0 or temperature of X0 in

some city, let us say Chennai, okay. So suppose you have that input, you would have the next

day's temperature,  let us say that is Y1 hat, the next day's temperature Y2 hat, next day's

temperature Y3 hat till let us say today's temperature which is YT hat.

Now for each one of them, you also have a corresponding ground truth, which should be Y1,

Y2, Y3, YT. Okay, so this is the ground truth. And whenever you have a ground truth and a

prediction and these 2 differ, you will have a loss function. Okay. So not only do you have

losses right at the end, like we do add, let us say with ANN's or CNN's or at least usual

architectures of them, you can have possibly, I mean this is not necessary, as I discussed

earlier  it  could  be  optional.  But  suppose  you  do  take  out  an  output,  you  do  have  a

corresponding loss function.

So the total loss is actually summation of all the intermediate losses through the layers. Okay.

Now in terms of LT itself, or the local loss function, you again have many choices but we

having seen only 2, you can either use cross entropy or you can use least-squares, depending

on what sort of problem matters. Typically what we have done so far in this course is we have

used least-squares, whenever it was a regression or a numerical output. For example let us

say temperature today. And we have been using cross entropy in case it was a classification

issue. 

For example you could ask will it rain or not? And in such a case, you would probably use

something like cross entropy is a loss function. In either case, will simply say that L is Sigma

of LT from T equal to 1 to T. So this is the issue of calculating loss function, it is a simple

deviation over or simple correction over all the previous loss functions that we have seen so

far. Now more important idea or a subtler idea really is that of back propagation.
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So let us look at back prop through time, we will call it B PTT for short. Now let us say what

the subtle issues involved here are. Okay. So, as usual, we will assume this, there is H1, we

start with an H0, the input here is X1, H2, X2, H3, X3, so on and so forth up until HT, XT.

And for now we will assume that we are taking out an output at every single time instant.

Okay. Now let us write the expression, for any of this H, we have this HT is some G, usually

tan H of some weight matrix multiplying HT -1 which we called WHH + some weight matrix

multiplying XT which we called WX H and we also had YT hat was some nonlinearity,

remember I will call this let us say G star.
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G need not be the same as G star, that is we can use a different nonlinearity here and a

different nonlinearity here, in fact in several cases we simply use a linear prediction here,

okay. So we call this WYH times HT. So, these are the 3 sets of matrices. Now for this video

and for the few that follow, just for simplicity we will use a different rotation. We will call

this matrix W, we will call this matrix U and we will call this matrix V, so that I am going to

write HT is g of W HT -1 + U HT YT hat is some G star of V HT, okay.

Now the most important thing about an RNN is W, U and V do not change with time. That is

another way of saying this across layers. So, this is what it actually makes us, it is possible to

train RNNs at least with a reasonable amount of time. So just to clarify, I have this H1 which

was this  multiplied  by W and this  multiplied  by U and this  H1 multiplied  by V with a

nonlinearity of course in all cases, gave me a Y1 hat. Now the W here, U here and V here are

exactly  the  same,  okay.  And  you  will  see  how  that  plays  out  in,  when  we  do  back

propagation.

So unlike an ANN, where at each player, these Ws, Us and Vs actually change, in an RNN,

they are exactly the same. So, we use the same W, U, V for each layer. Now how does, it

helps us of course, now we have fewer parameters to train. And while doing back propagation

we have to be a little bit careful.
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So let us take a specific case. So remember I want to find out for back prop, we need to find

Del of the lost function, I am calling it L here, you can use J or L, depending on what you are

comfortable with, for now I am using L, with all the matrixes. Now, this means we need to

find out Del L del W, Del L Del V and Del L del U. Because we have 3 matrices as far as

RNN's are concerned. So, this sort of RNN that I showed you has 3 matrices, U, V and W and

I willing to find out Del L with respect to each, the gradient of L with respect to each of these

weights. Okay.

Now remember that L itself is a summation of LT, that is we find out the loss at each of these

layers, let us say I will call it L1, L2 as I did just a little bit before and I need to find out Del

L1 these 3, Del L2 these 3 and then sum these up and that will give you, that will give me Del

L with respect to any of these 3. So let us consider just the sum of one of these. So let us

consider Del L3, del W, just to show you what happens, okay. So we will consider just one of

these local losses and see how we can apply back propagation in using this, okay.
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Okay, I will draw a small figure here just to repeat what we had before for clarity. For H1,

H0, X1, Y1 hat, H2, X2, Y2 hat, H3, X3, Y3 hat and Y3 hat leads to L3 because Y3 hat in

general will be different from Y3. So the matrix here involved is V, here U, W and V, okay.

No before we proceed, I am going to make some assumptions on the structure, okay. I am

going to assume that the nonlinearity here, remember Y3 is some non-linear function which I

said was optional, of V times H3, we will assume that the nonlinearity here is simply just the

linear function, or it is a linear activation function.

That is just to make some of our derivation a little bit simpler. You can do it for any case. So I

will assume that Y3 is V times H3 and in general YT is V times HT, you know that is not

going to matter as far as this video is concerned. Okay, next thing is we will assume that the

loss function is a least square function. So, let me make it simpler. So, I will call it, let us just

deal with L3, this is half of Y3 - Y3 hat square. That is just to make up a differentiation

original but easy. Once again you can do this kind of derivation for any loss function.

Now given these 2, what do you need to find out? We want to find out, let me do it here while

the figure exists. We want to find out Del L3 del V. Let us say, let us start with that. So let us

say I want to Del L3 Del V. How would I do it? Like we did before, Del L3 del V is simply

Del L3 del Y3 hat, del Y3 hat Del V. Now Del L3 del Y3 hat, you can see here is simply - Y3

- Y3 hat, okay. So that is fairly straightforward, okay. You can just simply differentiate this, as

we did before even while doing ANN's, okay. Now what about del Y3 hat, I should really call

it Y3 hat here.



Del Y3 hat Del V is now H3, there is a small catch here, I will mention that here now. I leave

this as an exercise, we will be asking this within this week's exercise. Find out whether the

matrix sizes. Remember L3 is a scalar, V is a matrix, so this whole thing is actually a matrix,

okay. Y3 - Y3 hat is a vector, H3 is also a vector, so please think about which sort of product

should come here or how should you are before that you get a matrix out of this order. So

please think about this, we will be giving this as one of the exercise questions.

Regardless, what I will write a is simply that Del L3 del B is equal to Y - Y hat times H3. The

simply give you how much will the loss change suppose I were to change V. That is fairly

straightforward, how much will this loss change suppose I were to change V. Now, there is a

subtler question here or a harder question here, which is, what is Del L3 del W? Why is this a

harder question? So let us 1st start doing a similar exercise to the one that we have just done.

So, suppose I want Del L3 del W, mathematically Del L3 del W will be Del L3 del Y3 hat as

we had before, differentiate this with respect to this, multiplied by del Y3 hat del H3, because

Y3 had depends on H3.
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Multiplied by del H3 del W, I hope this is clear. We just saw that Del L3 del Y3 hat is simply

- Y3 - Y3 hat, that should be straightforward. Similarly if you come down here, whatever del

Y3 hat, del H3, please notice this, this is simply V. Now what about Del H3 del W? Del H3

del W, for that we need to know what the expression for H3 is. H3, recall was G of some

nonlinearity, usually tan H of, let us see this here. H3 is W times H2 + U times X3, just to

recall you can see this. Okay.



We want Del H3 del W. So for simplification let us call this Z3, okay. So this is therefore g of

Z3, very similar to what we had for ANN's. H is G times, G of Z, or activation is G of Z, it is

very similar. So, if  you have that,  then this  becomes G Prime Z3, that  is Del H3 Del Z

multiplied by del Z3 del W, okay. Okay. Let us continue in the same vein. So this gives us G

Prime of Z3 multiplied by Del Z3 DLW. So now let us look at this. What is del Z3 del W?

Obviously none of these terms depend on del W, so this derivative goes to 0.

You have this derivative, this should give us H2 which is straightforward, + there is one more

term which is W times Del H2 del W. Now, why does this tom exist, okay, is this 0 or is this

nonzero? This is nonzero because notice that H2 itself depends on W, okay. Just like H3 is

dependent  on  W, H2  also  dependent  on  W, depends  on  W because  it  is  the  same  W

Throughout. This is the catch with back propagation through time. Unlike ANN where you

have a W1 here and a W-2 there, in the RNN, it is the same W Everywhere.

So that you cannot find this out independent of Del H2 del W, okay. So, in summary you have

Del H3 del W equal to G Prime Z3 H2 + W Del H2 del W. Now suppose you want a list to

del W, you have to go back again. I this is why it is called back propagation through time. So

you have G Prime of Z2 H1 + W times Del H1 del W, etc., okay. So when you, whenever you

want to find out Del L3 with respect to del W, gradient of L3 with respect to W, you will 1st

come down here, okay.

You have these 2 terms sitting there, but this is actually a more complex term, it is G Prime

Z3 times H2 + W times Del H2 del W. And in order to calculate Del H2 del W, you will have

to go back, okay and so on and so forth. So similarly you will, whenever you find to find out

let  us say Del LT del W, it  will  involve all  the gradients before.  So you will  have these

repeated sort of recursive additions sitting there and there are very clever ways of writing

these codes, as people have already done within tensor flow, etc.
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So we have now seen 2 terms, we have seen Del L3 del W, we have also seen Del L3 Del V,

which was straightforward. Finally let us look at Del L3 del U. So, once again the same thing,

the 1st 2 terms will be the same, Del L3 del U is equal to Del L3 del Y3 hat multiplied by del

Y3 hat del H3 multiplied by del H3 del U. Okay. Now this is anything a is mildly trickier

than the previous one, this is V. When I was doing Del L3 del W, you could see that this

depends on this, this depends on this, this depends on W, okay. And through the W it comes

through here.

Now it looks like this should go through when we take a credit with respect to U, that it

should go through straightforward but there is some subtlety thereto. So let us calculate this

term. So, suppose I want Del H3 del U, remember this is Del by del U of H3 is G of Z3. So

this is Del g Z3 with respect to Z3 and del Z3 del U, okay. This is G Prime Z3 times Z3, we

have it here right here in front of us. So what is del del U of that? What remains is X3 + U

times, you have Del del U of this term here, it W times H2, okay.

Now it might seem like, this tom is of course 0 because H3, X3 does not depend on U at all.

Now what about this term? This term is like I said a little bit subtle. So if I look at the term

Del of WH 2 with respect to del U, this can be written as W Del H2 del U + this term is 0.

This term is not 0 because this is W times G of Z2 Del T of Z2 del U, which in turn is W

times G Prime Z2 times Del Z2 del U and this is not 0. Why is that, because Z2 is equal to W

times H1 + U times X2 and it depends on U.



So this is very similar to what we did with this, there is a recursion there, okay. So, in all 3

cases, well in both the cases, in the case of W as well as U, you have a dependency which is

actually sitting there which will make you back proper get through time. You cannot simply

find out the gradient of L3 with respect to W or U without finding the gradient of L3 with

respect to this throughout time. And this is why sophisticated expressions exist. When we

look at, in the next couple of videos when we look at deep RNN's, you will see that this issue

can actually become a little bit more complicated.

Which  is  why  tensor  flow for  example  has  a  full  graph.  So  all  these  dependencies  are

resolved in terms of graphs by using automatic differentiation. And back propagation uses

automatic differentiation, one sort of the other. So, that is it for back propagation through

time. The basic idea for you was to see that training can be a little bit more complex. In

practice,  unless  you  are  writing  some  new  architectures  by  yourself  or  entirely  new

architectures, something that nobody has ever thought of, you will not really be doing this by

hand and ever. But this is slightly important for you to see or at least get an intuition of what

is happening in and as well as to see the next video where we will be dealing with vanishing

or exploding variance, thank you.


