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And the  other  important  topic  that  we would like  to  look at  before we go into,  how to

initialise  weights  is  the  learning  rate  decay,  again  here  the  idea  is  because  the  neural

networks, it is a very complicated function of the weights, it is very difficult to say when we

are  near  optimal,  minima  and  we  are  some  very  poor  minima,  so  that  must  be  some

systematic way of changing your way on the learning rate, if this is basically your alpha that

you are pretty much used to that is, you must have seen X goes to X minus alpha delta L over

delta X or in this case weights, your use to weights.

So your W minus alpha delta L over delta W right, so this alpha okay, so at this alpha in this

many what we typically do is to where it is alpha with every iteration or epoch, so what you

mean by epoch? Epoch is when you are gone through your entire data set what is? That is one

epoch right, let say your seen stack so castigated in descend or many batch credit descend, let

run through our entire dataset and that will be considered as one epoch, so from epoch to

epoch you can vary your learning rate.

This  is  important  because  that  this  learning  rate  will  dictate  how much  to  change  your

parameter spiking right because that the magnitude of the update also depends on not only on

the gradient of the last function of the respect to the weights but also on the learning rate



alpha, so by moderating alpha you can also moderate the magnitude of your updates. Okay,

so what happens is that when you have very high learning rates right, so let say alpha is very

large number it settles down is to 1, then your parameter values would vary rapidly okay, they

would vary rapidly and by large amounts and would not settle down in local minima.

However lower learning rate would lead to slow learning which means that they will not be,

parameters  want  change rapidly  and it  is  quite  possible  that  they can  stuck in,  out  false

minima okay, so then this, there is no good way to know when to do what but typically there

are techniques that people use is to decrease the learning rate as the number of iterations or

epochs increase.
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So there are many ways to do that right, so one of them would be to reduce the learning rate

by a constant factor every epoch or K every epochs, so there is spelling mistake here or every

K epochs, so this is again decided by you, you have to again, this is, consider this as another

hyper parameter that you have to optimise right, another way would be to check the valid, so

you have validation data and training data, so you check the performance on the validation

data and whenever the performance on the validation data the improves you decline,  you

decrease the learning rate by a certain fixed at factor okay, what that factor is? Of course has

to be determined by try an error or some systematic search that we saw earlier.
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Okay, one of the more automated ways also to ensure the very smooth decay, so for instances

we in the previous techniques we saw you manually, not manually you set, you decrease the

learning rate pie fixate amount, by a fixate factor every epoch, here this is more smooth way

of decreasing the learning rate right, so this is your initial learning rate, which you set again,

this is another hyper parameter that you have to figure out, divided by 1 plus there is some

decay rate times the epoch number okay.

So as the number of epoch increase depending on the magnitude of the decay, your initial

learning rate will also decrease okay, so this are very small way of decreasing your learning

rate, there are also exponential schemes for taking your learning rates, so that is also possible,

many of these software packages have these implemented as block boxes, you are welcome

to use, of course you should know what you doing, this is the reason why we are explaining

this here okay.



(Refer Slide Time: 4:52) 

The next topic is weight initialization okay, so this is again a very important topic because if

you do initialization the weights properly, then you will not get good convergence, you will

see why that happens and then you have to keep, you know trying out different starting points

to train a network again and again to before you finally hit on something, some initialization,

that actually works. Okay.

So why it is important because in a typical neural network there are large number of its.

Okay, hundreds  of,  thousands  of  weights  for  very  small  ANN going up to  millions  and

millions of weights or large neural networks right, so which leads to a large search spaces, so

that spaces is because we have to look, you to minimise your loss function and loss function

is a function of your weights, so it is a multidimensional problem that you are solving and so

if you want to optimize that loss function than its a very large search space of weights 

So you are looking for a combination of one hundred million weights or more which will

actually work and you want to affect, you want to weights must be initialized randomly, to

effectively randomly to because to prevent convergence of false minima and also text your

entire space, just as we saw as to how we have to pick your range of hyper parameters for,

you know for hyper parameter optimization, we also have to pick up, we also have to figure

out  the range of  weights  that  we,  for  initialization  and so that  the  entire  space  of  space

function  is  covered  okay,  to  some  extent  at  least  and  that  is  required  for  the  effective

performance for neural network.
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So how is this  typically  done and what are the problems, your naive initialization would

involve a sampling weights from a gaussian distribution or uniform random distribution with

zero mean and unit variance right and so your distribution of weights for 1 weight let say will

or bunch of weights will look like this, so this is the W and this is probability of W. Okay,

typically this is a distribution from which you will pick right.

Now we can do this but there are some problems associated with this and will see what those

problems are okay, assume that your input data X has also been normalized, so the number

we normalized it that is called normalization to have it zero mean and unit standard deviation

and we are also taking weights, so that they have zero mean and so your weights WI have

zero mean and unit variance, your input features XI also have zero mean and unit variance

right.

This, you know, we also assume that the individual XI or independent WI or independent,

note that this might need not be, this did not be an individual XI being independent need not

be true and subsequently the WI also need not  be independent,  especially  in the case of

images where the structure, but in most cases this is true. Okay, so then what happens, so let

say we have 1 layer, first input layer as XI and we have let say M features right.

So your linear combination would give raise to summation WI, XI right, summation 1 over M

and the summation of this right, so we just write this out, so that will be this, let call this

output Y right or actually I stick to the notation and right, so Z is, will ignore the bias okay, W

not, Z is W1, X1 plus W2 X2 plus 1 so for plus WM XM, M is number of features, let us take



me about the first layer right, so the variance of Z it turns out under these assumptions that

WI are independent or XI are independent, WI XI are independent of each other, it turns out

that and variance of Z would be M times the variance of Ws and times the variance of XI

okay, that is what happens okay, which is nothing but approximately, so in this case M okay.

So what does its means, so what is the implication? So the implication is that if you randomly

sampled Ws from a gaussian with zero mean and unit standard deviation and you do and of

course you have normalized some features also to be that way, then you are variance on your

some that goes into the Z number is the input to your sigmoid function, let say, let us consider

sigmoid function just for sake of involvement M is input to your sigmoid function, then what

happens we saw that for large values of Z which is possible right, because the variance of Z is

M time something, so you can take a very large values, so in this case, the sigmoid would

saturate.

So during back propagation the derivative would be zero and which means that the rates will

not get updated, so you are stuck okay, so this is the problem with drawing from, so but of

course people have been doing this and so you will have to do many trials in errors, so that

some point will get one good combination which will give you do good back propagation

okay, so this is just looking at it from one input to a neuron right, so what we have discussed

is this is one neuron somewhere in the first layer all of these weights, this are the XI and these

are the WI leading into it, also recall that there will be neuron is going from outside of them

also. Okay.

So if you have a, say in this case I have used the M features because we are assuming that I

am and the input layer and typically we would see instead of M I will say N in which is

basically the number of neuron, number of ways that are feeding into, number of neurons that

are feeding into a another neuron in the next layer okay, other terminology is N out which is

the number of neurons or the waves emanating from a neuron in a layer okay, so that is you

have to keep track on that.

So we have established that the variance of Z, which is, there is a linear combination of the

inputs to a neuron time and tabulate the weights, so it is M times the M, it is pretty much M,

so it makes sense, if he scale our choice of weights by M, so the variance should be, so we

when try to sample, will sample from distribution is zero mean and variance 1 over M, that

makes sense, so that is what we will do. Okay.
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So the variance of W got from the previous layer argument would be got 1 over in this N in I

call  it.  Okay, which is  basically  the number of neurons that  are feeding into a particular

neuron, so from a previous layer okay, so this is N in, of course you know that the number of

neurons also, number of weights coming in from the neurons in the previous layer and of

course from each neuron you have inputs going to multiple neurons is output right, so this

number of output here we call it N out okay

Now we only looked at the forward pass, in the previous arguments we have only looked at

for pass what happens? Now it  turns out that  if  you consider the backward pass,  that  is

basically when you are doing back propagation and you want to preserve gradients in, so then

you have to keep track of when you have to consider this number also right, because the

gradients feed in to each of this neurons from N out number of neurons right.

So then what this xavier initializations does based on the author of the paper who proposes

initializations is to make sure the variance of W is the average of N in and N out, so it is

scaled by an average of N in and N out, so which means that 2 over that. Okay, this is the

solution, the often it turns out that it works very well for a wide variety of problems okay, so

in  both  this  arguments  the  idea  is  that  when  you  have,  it  considered  the  weights  and

independent  and  the  features  are  independent,  turns  out  that  the  variants  of  the  linear

combination of them scales as the number of them, number of the weights or the number of

neurons and to take that into account you scale the variance which you, scale the variance

from the distribution from which you sample the weights by an appropriate factor okay.



So these are commonly used in  practiced,  xavier  initialisation  is  very commonly used in

practice and so is this one, the 1 over N in is also commonly used okay, so both of them give

very good results for, you know convergence of a network very quickly, so all of these how

they help is that, they help fast training okay, otherwise they will take for our to converge

because you are the saturation than the gradients become zero, because of the saturation and

finally back prop does not update the rates is effectively and so the learning it comes very

low, by doing this investigation will have effective learning.

So this is our lecture on hyper parameter optimization, data normalization, data scaling as it

call as well as, weight initialization okay, you have question, please post them on the form.


