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Transfer Learning

In this video we will look at Transfer Learning. One of the strategies used for training deep

neural networks when the number of data points available for training for the particular task

that you are interested in is very low.

(Refer Slide Time: 0:31)

So, the idea here is, to use what we can refer to as a Pre-Trained model. Okay, so for instance,

let us say you have some data wherein you are trying to figure out for a particular task, okay,

it’s not an ImageNet challenge. For instance, you are trying to determine a species of birds or

easiest thing you have data, you have a limited number of data to determine the make and

model of a car depending from the pictures. This is some hypothetical task but then you don’t

have enough data,  maybe you have thousands of  data  points  but  that’s not sufficient  for

training a deep neural network.

So, what you do is, you would take a network like Alex net or VGG or Inception. We just

been trained on image ImageNet database. Do a forward pass through a pre-trained network,

(())(1:38) forward pass the data, right? And store the embedding. So if in the case of Alex net

or VGG you have about 4096 neurons in the output layer before the classification there. To



take this as a representation of your data. So now, your input data is now represented by 4096

length feature vector. That is the feature that represent the data.

And you use this as input to another machine learning framework let’s say an SVM support

vector machine or binary trees or maybe just another neural network that you can train with

this data and classified appropriately. Okay, so this is a strategy that works very well, that is

taking the embedding in this case this 4096-D vector would be the embedding that you get

from your CNN. So this strategy works very well if the task at hand is a data for the task at

hand or the task at hand is similar to something that ImageNet accomplishes. In this case

since we are talking about ImageNet, we will take that as the standard.

So,  ImageNet  networks,  so  the  networks  strained  on  ImageNet  data.  Pretty  much  it’s  a

classification net or image recognition network strained on thousands of types of images,

okay. And you can  safely  assume that  it  is  learned  all  kinds  of  possible  features,  okay.

Corresponding to the images from the wild present in the ImageNet database. 

Now, if your input data is very similar, in our case example I quoted that no types of type and

make and model of the car or let’s say even type of species of birds or for instance species of

cats or dogs, okay. That data is kind of similar to Imagenet data. So if you have a network

trainer  ImageNet  data  maybe  then  you  can  use  this  4096-D  representation  as  a  reduce

representation of your input data. And then use another machine learning paradigms to train it

in order to accomplish your task.

However in some cases, the data might not exactly be the same or maybe there is probably

have a slightly larger dataset. In that case what you can do is, you can take the network with

pre-trained weights, okay. Modify the classification layers from 1000 neurons to number of

classes  in  your  new dataset  that  your  task demands,  and then train  the  network.  So this

portion of training the network is basically training the network with whatever data you have

for your task. And this process is this training with your excess data is referred to as fine

tuning, okay.

And in general this is what people refer to as transfer learning, okay. So we start with a

network that has been trained on a very large database and most often the not that image

database is very similar or the task to be accomplished is very similar to the task that you

have now proposing to  do with your  current  deep CNN. And then you use your  limited



dataset to modify the weights in your network appropriately by using backprop. And this

typically works very well in many cases.

(Refer Slide Time: 5:25)

So the reason it works as I stated earlier is that, if you have a fairly large database which is

labelled as like the ImageNet database, okay. Considerably effort has gone into making that

so, and if you have a network trained on it, couple of things. One is that, given the size of the

database and the depth of the network you have trained on. Safe to assume that the network

has learned all kinds of low-level features which are transferable to other tasks.

So here the leaper layers let’s say for some CNN trained on ImageNet,  the deeper layers

learnt task specific features. So for instance features specific to certain breed of dog or cat.

These  are  easier  to  train  as  these  are  closer  to  the  classification  layer  so  there  is  back

propagate faster. The initial layers learn more generic low-level features like edges, blocks,

some kind of patterns in the picture. And generally difficult to train because of the errors

being difficult to backprop the errors from the output layer to the innermost layers.

So, if you have a network which is strained on a fairly large database on a task which is kind

of very similar closer to what your, at least related to what you are going to do, then it is safe

to assume that at least that the lower level features learned by that network are transferable to

your task, okay. So we just try to exploit that features learned by this already trained pre-

trained network for your task. 



And since the deeper layers are easier to train compared to the innermost layers, the earlier

layers in the network. Fine tuning your pre-trained network with the data that you have will

hopefully modify your outermost layers and adapt it to the task at hand.

(Refer Slide Time: 7:43)

So in general when you try to do this transfer learning, one strategy is to freeze the initial

layers  because  as  I  mentioned  earlier  would  expect  that  the  low-level  features  are  also

transferable to your data. In some cases, it’s possible that even the, you are using the pre-

trained network because you feel that, you can say that the weights have been initialized to a

pretty good value after training with that large database. 

But then your task or your input data is totally not related to the network you are using. So for

example for the second case, let’s say you are trying to accomplish a radiology task, we will

look at a case study later on. So you are trying to classify chest x-ray scans, right? Right, so

we’re looking at chest x-ray scans are being abnormal or normal, okay. 

Now this data, chest x-ray scan data is not similar to ImageNet data at all, it’s quite (())(8:57)

different.  But then you it’s still  like to exploit  you know the deep network that has been

initialized with pre-trained weights. But then in this case you would have to necessarily train

from scratch. Okay, so but in that case we assumption is that you have enough data to do so

and this  is  another  mode of transfer  learning even though you were used the pre-trained

network as a good initialization of weights and you would still go ahead and train all the

weights in all the layers you see the data available to you.



(Refer Slide Time: 9:31)

So just to illustrate some of the points that we have talked about earlier. So ideally if you

have data which is let’s say similar to, in this case since I am looking at a this is Alex net,

okay, we looked at this before. So your data is similar to ImageNet and then you have a

classification recognition task, right? Then what you would do is, you would just drop this

out, okay. 

And then replace it by say in this case let’s say you want looking at 10 breeds of dogs instead

of thousands will have 10 output, and then trained or fine tune with whatever data that you

have  for  the  task,  okay. But  then  let’s  say  your  input  is  radiology  data,  chest  x-ray, so

dissimilar but large data. So you take the, of course you would still go ahead and modify the

output layer. 

Let’s say you need only normal versus abnormal, so instead of 10 you will have just one

output, right? You can say 0 or 1 and you would train the entire network. This is assuming

that you have (())(11:20) different data but then you have enough of it. So because there are if

you know Alex net has several million para meters, 60 million and if they want to train them

you need to have as many datasets  of course you also do data  augmentation  in  order to

increase the size of a dataset, artificially.

So, given that the data is dissimilar on the task of chest x-ray is a good example or medical

data in general, medical imaging data in general or some form of spectral data which is not

similar to ImageNet, then you would have to train the network from scratch but you can use



the pre-trained network on the pre-trained weights as a good initialization. Okay, so that’s

typically this recommended. 

So in any case if you have enough data let’s say you have hundreds of tens of millions of data

points let’s say images for instance for some particular task. One thing you can still do is to

keep the network architecture retained network architecture. This case I have shown network

but you feel that use inception or some other model that’s fine. 

But  you train from scratch.  So that  way you have you do have a structure  a  (())(12:53)

architecture that has been proven to work with large datasets image datasets. So you can use

that same architecture even try to see if the some of the training hyper parameters can be

applicable or not and use your data to train it from scratch.

Only if in the case where you have dissimilar data but you don’t have enough of it, okay. so

the sense that it’s not millions but maybe of several thousands and then you can do data

augmentation may be of tens of thousands then you still, the idea would be to freeze some of

this layers, okay and also (())(13:42) that’s to train the final layers let’s say we trained this

few layers using your data and hope for the best, okay. Assumption behind Tri-freezing these

layers  is  that  at  least  you have believed that  the local  features the low-level  features  are

transferable to your task that you are interested in.

So all these strategies put together typically is referred to as transfer learning wherein you put

in simple terms you take a pre-trained network and see if you can just modify it slightly to

accomplish your task of interest. Okay, so the other scenario that I think I referred (())(14:28)

to early on is when your data is actually very similar to let say in this case you are looking at

Alex net trained on ImageNet data.

Maybe you have a very similar data since let’s say you’re looking at cat breeds of dog breeds

you want to identify different type of dog breeds based on just the picture, you can just then

as we discussed earlier just take this embedding out and put it through let’s say another neural

network and you have either 10 outputs hundred dog breeds let’s say or 10 dog breeds, okay.

Such a thing is possible, okay. So if it’s very similar then you don’t have to maybe even train

from scratch or even do fine tuning can take the embedding from the network, okay. 

This  is  done  in  many  cases  so  for  instance  if  you  are  trying  to  do  task  like  video

segmentation, video frame segmentation or trying to do object detection then many of the

imports look like the objects in your inputs look like objects in let’s say ImageNet, then you



can use image net directly in such a, in the sense the networks trained on ImageNet directly in

such applications, okay. When you move across applications and you be careful about how

you’re going to accomplish transfer learning.


