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In this video we will look at hyper parameter optimization which is one of the important

aspects of training a deep neural network. 
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So in general the performance of the network depends on how well you train it. And one

aspect of the training is to various hyper parameters involved in constructing a deep neural



network, okay. So this would involve parameters like number of hidden layers, number of

units per layers or number of filters per player if you can think of it that way.

What  kind  of  activation  functions  they  use?  If  you  are  using  some  kind  of  dropout

regularization, how much do you use that? What kind of regularizer to use L1 or L2? And

what is the strength of the regularizer? What learning rates I would typically do? The weight

decay? And of course initialization we will look at this as a separate topic. We will not touch

this here but we will look at how to do weight initialization later on. In the later video.

Wrong setting. In this case wrong setting is, I would say it is more like not an optimal setting,

it could actually affect the performance of a network okay. In many ways, in the sense, it

would div, it would converge to appoint where it’s not giving you a very high accuracy in

terms of the classification or the last function does not decrease beyond a certain point. 

Or another case is,  very slow convergence if  you don’t have optimal  values,  so this  is  a

portion, this comment is part of the network optimization is what makes the training of a

network very hard, okay. So in the process if you are doing a much simpler network, let’s say

a couple of layers or 2 to 3 layers in general that is easier to optimize you can do that by hand

per se.

But  as  the  number  of  players  become large  and size  of  the  dataset  grows,  in  general  it

becomes  very  difficult  to  determine  what  exactly  you  have  to  choose  as  these  hyper

parameters.
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So typically there are 2 ways, methods that are recommended, say it is more like heuristic

than method. You look at one of them it is called Grid Search. The idea is to train the network

with each possible combination of a hyper parameter, okay. And less to say as your number of

parameters increases then your, the competitions and all will become much higher.

Remember that if you have a slightly deeper or larger network then you actually have to rein

the network with every choice of these parameters, okay. And of course you would have a

hold out dataset or called validation set data set. Validation dataset which you would use to

see which parameter setting is receive the best results in terms of you know, depending on

your task that the neutral network was set or accomplished.

Now this we are doing it, this hyper parameter search and we will search in a very systematic

way. So in this case if you see if the columns are hyper parameter to then for a fixed value of

hyper parameter one you would change hyper parameter 2 and that will be the only variable

and that’s one way of doing it and then you would fix that and change the hyper parameter

one.

So one way is you would hold all other, it’s Grid search paradigms where in you hold, you

need to randomly initialize all the parameters that you are trying to optimize and just very one

systematically see which gives the best validation result and you take that value of that hyper



parameter, keep that fixed and then go to the next one change that and so on and so forth,

okay. So this kind of grid search is possible in a grid search scenario.

However as the number of parameters increases then the number of times that you have to do

is experiment goes up exponentially, very quickly. So it’s very easy to see here, right? You

have 2 parameters, you have 6 values for every one of them, so that’s like you have to do 36

and if you have 3 or 4 or 5 and each of them has 6 combinations then you see that’s 6 raise to

5, right?

So it will be for 2 parameters you get, you have 5 then it is pretty much 6 raise to 5, okay. So

number of operation increases. Number of operation increases. Now another thing to look at

here is the scale of the grid search. So what we meant by grid search was, so if you have

certain range of your parameters, most of the parameters except for a number of layers or the

number of activations per player or the number of filter kernels or continuous.

So for instance learning rates or some weight decay parameter, so that you have to discretize

in a,  let’s a  say very meaningful  fashion. So for instance if  you are looking at  let’s say

learning rates just for the sake of argument then you can set the learning rate to 0.1 and then

you can set it to 0.015 so on and so forth but then if you see these are of the same order of

magnitude on the same scale.

So one trick is to set all of these in a log scale, okay. That’s one way of splitting the grid. So

this grid search method typically works very well for smaller networks where you don’t have

as many parameters to optimize and it’s also cheaper to do these computations in a brute

force manner, okay. So as your search space increases exponentially as because you have

more and more number of hyper parameters to optimize. The more the better method would

be to do Random search.

Here instead of training on all possible configuration, you just choose “Set Radom”, so that is

to the same grid, you can make the similar grid and then you would try to sample, you know

different areas of the grid, okay. Just to get an idea of, what kind of results you get for each of

these points that you have to. Now once amongst these 5 points, let’s say that I have clicked.

Let’s say this one gives you the best result, right? What you can they do is, search much

closer to this point, see for a better option that is possible. One the way this computation

savings happen is that if you recall from the grid search argument, you have to hold all the



parameters the same. Let’s say you have 6 parameters, you keep constant 5 parameters and

you have to change 6 continuously depending on a good discretization.

That means that you are repeating calculations for the same parameter value numerous times

that doesn’t happen in a random search. However it is important that you sample your search

space intelligently, so that you are able to cover most of the space in a reasonable fashion.

Other thing to look out for is that, when your best result corresponds to something at the

edge.

So this is the edge of your hyper parameter grid then it is also better to actually increase the

grid to the left or in that case if it is over here to the right and search a little bit more because

it  is  possible  that  there  are  better  values  of  a  settings  of  the  hyper  parameters  available

beyond  that  value,  okay.  So  the  2  important  takeaways  are  that  discretize  your  hyper

parameter values on a log scale.

And you construct a grid and this grid again can be made based on what kind of values you

would expect to be meaningful depending on the context of the problem or you can look at

some  literature  survey  and  see  what  typical  values  are  used  in  setup  shown  good

performance, so the ImageNet architectures are a pretty good pointers that way and most of

them do a random search in order to get to a point where they can initialize to the correct

hyper parameters.
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So there is another way which is called as Hand Tuning which is not highly recommended

which is again very similar to the grid search but you don’t do it in a very systematic fashion.



We just do this to see if there is set trend, okay. So for example is given that, so if you have

an MLP and if you have the neurons in all the layers and you get accuracy 65 percent and

then you double the number and you get an accuracy of 82 percent that’s a positive trend.

Then maybe you can just be a little bit more adventuress and Private 200 neutrons and the

accuracy of 84 percent, maybe that’s a diminishing returns there. So then maybe you see okay

this is, maybe then it doesn’t make sense to go beyond let’s say h100 or 150 neurons, okay.

So you can use this kind of strategy to figure out the limits of your grids, okay. See where

you can start from, so that you can get a reasonable result and then maybe a grade at that time

and either do a random or systematic grid search. 

So there is one more advanced technique we won’t go into this in detail which makes use of a

machine learning framework. So you have a learning program or learning strategy to figure

out the optimal hyper parameters. Here people use by the Gaussian processes to figure out the

space of hyper parameters what your validation accuracy looks like and what the accuracy on

a validation data looks like.

So that’s the function you are trying to fit, since that the loss of the validation performance or

the performance on the validation  data  as  a  function of  the hyper parameters.  So if  you

estimate that function using Gaussian processes that you can find out the optimal value of the

hyper parameters which gives you the best possible result on the validation data.


