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Semantic Segmentation

Hello and welcome back. In the series of lectures, we will look at semantic segmentation and

fully convolutional networks that are used for accomplishing this task.

(Refer Slide Time 0:25)

So let us consider this image here. It is an image of a building. So if you have a typical look if

you have if you consider the MUL networks that we have looked at so far especially those that

(())(0:37) challenge and if a building is one of the classes, what the network will typically do is

to just identify this image as a building or for that matter, a lawn let us say a skyline for distance.

However in many tasks, what is required is actually a pixel wise labelling of the scene.

So if you see on the right here, here is the result of a semantic segmentation network shown here.

So it has classified each of the pixels into a corresponding category. So for instance, this region

here, it is a building. This region all the pixels in this region have been classified as a building,

the skyline is appropriately classified as skies and we have the vegetation here and here and the

fencing is also been classified accurately. Of course, there are some errors where it mistakes the

shops for the fencing also. But that is to be expected in some networks.



So this is the typical task that we would like to accomplish in semantic segmentation. That is

basically classify each pixel as belonging to a particular category. Then of course there are many

nuances here. So for instance, if you look there is just one building. Let us say there are a series

of buildings separated by some space and in some applications, it is actually desirable to label

each of those buildings and also recognise them as new individual  buildings.  So it  is called

instant segmentation, a slightly more fine grained task than what we are going to look at right

now.

The applications we are going to look at, the networks are going to look at, are only segment

objects  of  a  particular  type.  So  if  we  say, if  there  are  multiple  buildings,  they  will  all  be

designated  as  buildings.  If  there  are  multiple  objects  of  the  same  type,  they  will  just  be

designated as objects  okay of the same object.  So for instance,  just  to reiterate,  we want to

classify every pixel  as belonging to a  particular  object  and that  should be the output of the

network. Okay.

(Refer Slide Time 2:31)

So how would you accomplish this with let us say some of the networks that we have seen so

far? (())(2:36) we have looked at so far in these lectures. So first let us take this input, same

scene of a building (())(2:44). So what we typically do is take patches of certain sizes, let us say

64 by 64 patches and give them as input to the convolutional network to classify it as belonging



to one of N classes. So for instance, we might train a nodal network to identify sky, vegetation,

buildings and objects, general objects or person and we train the network as such.

So for instance, the image may challenge at 1000 category. So we can use a similar network,

train the network similarly to identify anyhow let us say 4 or 5 categories depending on the kind

of scenes you are looking at. So for instance, images of parking lots, we just want to classify

drive ways and cars and maybe signs. Okay. So the idea is to take patches from the image, pass it

through the network, let us say a typical CNN and output the particular class, the prob will tell

you the particular class, or the score for the particular class. So that way we will accumulate.

So this score is for the central pixel of that patch. So that is what is shown here. So that, so we

would slide the patch, centre the patch around every pixel in image and classify that particular

pixel as belonging to a particular category. So as you can see, this can lead to a lot of complexed

(())(4:07) because typical images will be of the order of 200, 200 to 500, 500 to million pixels.

So we will have to do 1 million for, pass it through the network in order to label every one of the

pixels.  Of course,  you can subsample the image and do it but that will lead to errors in the

semantic segmentation.

So the issues as stated earlier, it  is very inefficient in terms of competition.  And there is no

feature setting among the overlapping patches, in the sense that the network only looks at that

particular patch and it does not pay attention to what is around that. So ideally to make it more

effective, you end up taking larger and larger patches, it is of course between that, you into doing

more competition and the results will take a longer time to be output.



(Refer Slide Time 4:57)

So what  would be ideally  what?  So that  is  why we are  now slowly moving into  this  fully

convolutional, we received word that is in a few moments. What will be ideally what? We want

an input image, let us say of size 6 cross W with 3 channels, this is a typical RGB image and we

would like to send the image through a series of convolutions and have an output layer which has

as many feature maps as there are objects that we want to detect and each of those feature maps

correspond to a score which gives the probability that a particular pixel in the map corresponds

to a particular object.

So in the end, we take the R max across the feature map and assign labels to every pixel in the

input image. This is typically what we would like to accomplish because this is more, this will be

more efficient. And another advantage would be since if you make it convolutional, like we see

here, we have left out Max pooling layers and all that and as it is convolutional, we can give

inputs of any size. Okay that is another advantage. So we do not have to be arrested to a fixed

size image. So if you look at the method we explode in the previous lights, it is basically we have

a CNN which takes as input the particular size patch and then it classifies the centre pixel. Here,

there will be no such restriction, that is typically what we would want and this is the aim for the

fully convolutional network.



(Refer Slide Time 6:27)

Now if we look at the, so let us go just a little bit more detailed as to how these things work,

okay. So what we want is we have an input image, a typical classification network is what we

want to use for semantic segmentation. So we would take patches from the input image and feed

it to the CNN. Again this is Alex slide shown here. Alternative convolutional max pooling areas.

However what we do see here at this layer here, the 3 cross 3 pooling layer followed by a fully

connected layer, AFC is fully connected layer. Here what happens is here after Max pooling, its

size is size would be 256 cross 7 cross 7.

That will be the size of the volume after Max pooling. Now this is fully connected to the 4096

neuron. So in order to do that, we have to rationalise it. So 256 cross 7 cross 7 is a rationalised

into one vector and it is fully connected to the next layer which has 4096 outputs. So this is what

prevents us from having an arbitrary sized input. Okay. Because if we have let us say a slightly

larger input than this will be difficult to do because the number of weights here are fixed. Right?

So how many ways are there? So we calculate 256 cross 7 cross 7 times 4096. So this weight

matrix, is the size of the weight matrix, number of elements in the weight matrix. Right? Now if

we have let say a larger image, 224 cross let us say 400 cross 400, then what happens here is that

this feature map size would increase, okay this number would be much larger. The size of the

feature map will increase. Number of channels would be the same, size of the feature map should



increase but then it is not possible to propagate beyond this point because the number of weights

are fixed here. Okay.

So this is a restriction that comes in with whatever networks we have looked at so far is that size

of the input has to be fixed. So we cannot use arbitrary input sizes. So we, in order to have a very

flexible semantic segmentation framework, we would like to have a network which does not

have this limitation.

(Refer Slide Time 8:52)

So what we do is to convert these fully connected layers into what are called fully convolutional

layers? So how do we go about doing that? So let us just take this typical block of input coming

into a fully connected network, right? So this 7 cross 7 feature maps about 512 of them and we

rationalise this and fully connected to 4096 neurons which are in turn are again connected to

4096 neurons. Then we have let us say this was like Alex net we will have this will be connected

to 1000 output classes. Soft Max, 1000 (())(9:42) soft Max.

So how do we convert this into a fully convolutional network? So we would not accomplish that,

we would just define filter convolutes that covers the entire input region. Right? So for instance,

we can define 512 filters or excuse me, so in order to convert this particular layer into a fully

convolutional layer, what we would do is define 7 cross 7 filters, of course the depth of the filter

is 512. We will define 4096 of them. Okay. So this will lead to 4096 one cross one feature maps.

And then in turn, we would again define 4096 1 cross 1 filters whose depth is again 4096 and we



will get for those 96 outputs. Okay. So this is how one would convert a fully connected network

to a fully convolutional.

That is, to just before the fully connected layers, you define filters which should cover the entire

input region. And then the fully connected regions themselves we would convert them into 1

cross 1 convolutional layers. So now the network is fully convolutional. So what advantage does

it produce? So let us say for this particular network, we have an input that is coming in, which

has  22  cross,  this  particular  layer  gets  a  larger  input  let  us  say  because  your  input  size  is

different, 22 cross 22 cross and 512 channels.

So you can see that since we have defined 7 cross 7 filters, we get a 16 cross 16 output. Again

the number of channels is fixed for over 96. And again by doing 1 cross 1 convolutional, you get

16 cross 16 output feature maps, okay. So what that is accomplished now we have to see how we

can use this for semantic segmentation. So what do these feature maps represent and in fact do

they  represent  anything  at  all  and  how we  would  get  to  the  point  where  we  can  semantic

segmentation?

(Refer Slide Time 12:10)

So let us see how ’s see the difference between image recognition and after fully convolutional,

fully  convolutionalisation,  what  does  the  output  mean?  Okay.  So  for  a  image  recognition

network shown right here, you would have as input an image and in this case what you are

shown is a sequence of convolutional layers and these are the fully connected ones right here.



4096, 4096 and 1000 output classes. So these are the fully connected layer. So you would get

1000 output probabilities of scores and you would assign the label corresponding to the highest

probability.

So in this case, the highest probability corresponds to cat, so you will call it a cat. Now let us say

we have an image, in this case we have now a fully convolutionalised nodal network like we saw

earlier. So instead of so going from the 256 to the fully connected layer, we define filters which

spans the area of the input volume. Okay. So then once you have done that, then as we, we have

a slightly larger image as shown here as input. Then we would get, again for 4096 feature maps

of a given size and each of these we can again do a convolutional layer to give rise to 1000

feature maps, 1000 output maps.

And each and if we look at one particular map there, so let us so these are feature maps, these 2

feature maps, 4096 feature maps of particular size depending on your convolutional (())(13:56)

and we have this 1000. So these 1000 output scores. Now previously in the conventional CNN,

these were just 1000 what, single vector of size 1000 but in this case, there will be 1000 what

you call activation maps or score maps. Each of these 1000 outputs is itself a, like a feature map

or a map which contains the probabilities assigned to every pixel.

So if we take a slice of this 1000th and look at it, this is what is shown here, it will be like in the

image wherein the values should the probability of every pixel being a cat. Okay. So this is how

you, so we are converting from an image recognition, fully connected image recognition network

to a fully convolutional network. The output scores themselves are like images with the pixel

values of those images being the probability of that particular class.

So the Nth map will correspond to cat and if you pull that out and look at it and inspect the

values, it will show you that each of these would correspond to, the probability of that pixel

correspond being a cat okay. So now we have, for a input image we have a slightly, so if you

look,  this  image is  smaller  than the input  image.  So we have a  slightly coarser  subsampled

version of your probability scores. Okay. So this is the problem that we will address.

So we know that  because  of  the  subsequence  layers  of,  sequence  of  layers  of  subsampling

present in a typical network, the output score map will not be the same size as the input image.



So it will be a subsampled version. So the probabilities that are produced are also coarse. So of

course the most logical thing to do would be to up sample this by interpolation. So you can up

sample this to get the same size as the input with the every pixel showing the probability of the

class.

(Refer Slide Time 16:18)

So how do we actually accomplish that, this subsampling? That is the question, right? So we

have once again  we have  this  typically  image recognition  network  and by turning the fully

connected layers into convolutional layers, we opt in 1000 score maps corresponding to let us

say, they are dealing with image like data, so it is okay to let us consider 1000 category. So 1000

score maps, but then these maps are coarse. What do I mean by course is that the size of the it is

much smaller than the size of the input image, right?

So what we want to do ideally then is to up sample this to get to input size. So the simplest way

as I mentioned earlier is to do by inner interpolation. You do not have to learn it. In fact you can

have  a  (())(17:18)  by  interpolation.  But  that  is  not  very  efficient  because  in  the  process  of

downsampling throughout this network, you have lost some information. So one of the earliest

papers, one of the earliest papers to do fully convolutional networks for semantic segmentation,

what they did was to pick out feature maps from the intermediate layers and add that to the

output.



So how is that accomplished? So for instance let us consider the feature maps from this 3 by 3,

okay. So they are of a particular resolution and workout exact numbers on your own but just for

the sake of illustration. We can also pull out feature maps from this particular layer, they are of a

particular resolution.  Right? So, and then we have the output from here which again is of a

particular resolution, let us say. Right? So the idea is to up sample each of them.

The idea is to opt sample each of them and added, okay. So what that accomplished is that the

resolution have lost by going deep into network, (())(19:08). So how does this? So but then we

will have multiple feature maps in the output of a 3 cross 3 pooling operation. So the way to do

that is you would do 1 cross 1 doing1 cross 1 convolution to get one feature map and then you

would do bilinear into up sample all of them and add. This up sampling can be learnt. Okay.

So this is what we saw as transpose convolutions in earlier  lectures,  that is what it enables.

Means by up sampling feature maps from the earlier layers following a max pooling and adding

it to the output layer again we still have to, this the output feature map, the 1000 output score

maps are actually quite coarse, we still with the laptop sample them a bit in order to match the

resolutions of the feature maps from the earlier layers. But we add them and produce one score

and we do a pixel wise cos function.

So your loss function would be summation over the pixels in output score maps and summation

over the number of elements in, number of samples in a mini batch and then of course back

propagation is the same as earlier. Since we are using transverse convolution, again the it is just

like  the  operation  is  inversed  but  still  the  back  propagation  of  the  algorithm  will  work

seamlessly.



(Refer Slide Time 20:49)

So was one of the earlier techniques that was used but following that, other technique that was

proposed and it is now very popular, it is very similar to that what we saw earlier, by pooling

feature map from the earlier layers which is again we can call them skip connections or shortcut

connections, okay and that too seem to work. However, in the recent past, the most common

architecture is the encoder decoder network. So how this works is basically we have an encoder,

series of convolutions and max pooling layers and after we need just specific size of feature map,

we would once again do a decoder using again a series of convolutions and max unpooling XS

scroll.

If we do that you get a feature map of the output scores would be the same size as the input.

Okay. So the idea behind the encoding layer is to extract the most relevant features from your

input and the decoding uses that to produce a pixel wise labelling of your input. So this encoder

decoder structure is what is typically used for semantic segmentation. The advantage here is that

as you can see, there are these cross, we look at what these are but we have these connections

which  take  input  from  the  earlier  layers  in  the  network  and  then  pass  them  on  to  the

corresponding layers in the decoder.

So you can see that there is a symmetry between the encoder and decoder. We will have similar

sequence of convolution and max pooling in the decoder as well as the encoder side. You can say

that the decoder side is the transpose of the encoder. Okay. So here, in this particular network,



this uses a technique called max unpooling which eliminates the need for up sampling. Okay,

need for learning to up sample. So you saw in the previous slides, the technique will look at was

it has to learn to up sample the final output score, score maps as well as to up sample the feature

maps of the earlier layers in network so as to match the input.So there there is some learning

required, here they get over it by doing something called max pooling.

(Refer Slide Time 23:24)

So how does max unpooling work? So here let us say this is a feature map. This is just a drawing

example. Size 4 by 4. So if we do a 2 by 2 Max pooling of size 2, 2 cross 2 then in every block

here, the red block here gives you 9, the green block here gives you 8, heritage 15 and 10. So

those are recorded and this is your pooled feature map. However while doing that, we also keep

track of the indices. So if you restore it so for instance 9 would be if you 1, 1 means what this is

1, 1, 0, 0 in each of the sub blocks. Right?

So for instance, here this is 1, 1 in this 2 by 2 matrix. This is 0, 0 in this 2 by 2 matrix. And 10 is

0, 1 in this 2 by 2 matrix. And 1, and if we say 15, 15 is 1, 1 in this 2 by 2 matrix. Okay. So if we

keep track of this index, now we come to the unpooling layer. So where is the unpooling layer?

Unpooling layer is on the decoder side where the feature maps are of the same size. When you

come to the unpooling layer side, then you would make this larger feature map array and assign

the values to the corresponding locations. Okay.



So for instance, you will have a sequence of convolutions on the decoder side. Following the

convolution, you will have a max unpooling. So you will take the output of the convolution, so is

the output of the convolution and assign it to a larger array, to an array with corresponding to the

indices shown here. Okay. So by keeping track of the Max pooling indexes, you should be able

to construct this matrix by assigning the values. Here just for the sake of illustration, I have just

taken images, taken the values from a 4 cross 4 and assigned it to another 4 cross 4, we have to

do something similar but just by but we have to keep track of the indices here, okay.

So now once the max unpooling is done, in this case by assigning the values to the larger matrix

as indicated, we can then proceed to do convolution. The convolutions are done as in a usual

conventional  nodal  network  and  of  course  the  network  learns  to  fill  in  the  activations

appropriately..

(Refer Slide Time 26:18)

And  other  architecture  which  has  again  found  wide  applications  in  biomedical  image

segmentation tasks is called the U network. So this network is again very similar, so you have in

this case the encoder and a decoder side here. And we have this skip connections between the

encoder and decoder. This particular network again does transpose convolutions, so it does learn

the up sampling. But it does go deeper than most networks and because of the skip connections,

the generally the outputs are of a much higher quality.



So let us start with lets a typical input of size 512 by 512, here I have shown an image of cardiac

MRI  slice,  size  512  by  512.  So  you  would  produce  64  feature  maps,  a  succession  of  2

convolutions produce 64 feature maps with padded convolution so that the size is retained. Here

throughout this network, similar to VGG, we do 3 cross 3 convolutions okay. So the red indicates

max pooling. So your 5512 cross 512 will become 256 cross 256, number of channels we mean

to say.

Once again you will do a sequence of 3 cross 3 convolutions to produce again similar to VGG

you have two 128 feature maps. The initial layers, you have 64, we have 128. And then followed

by Max pooling, okay. And then 3 cross 3, again we will do 3 cross 3 convolutions to provide

256 feature maps. This has a max pooling layer there which gives you 64 size feature map. And

then once again to convolution to produce 512 feature maps, to successive convolutions and then

followed by a max pooling layer.

So you can go across this network, I have just shown you on one side, on the encoder size. So on

the  decoder  side,  again  you would  do,  you would  exactly  duplicate  this  operation  but  then

instead of convolution, you will do instead of the max pooling, you will do the up sampling. So

here, it is max pooling on this side, on the encoder side you will have you will do up sampling.

Again  the  convolutions  are  again  the  same  as  3  cross  3  convolutions  and  you  would

systematically reduce the number of feature maps as you go towards the output side.

Now in between, you have, you would copy in between for instance as shown here, these grey

lines show that you would take these feature maps from the encoder side and contact made them

to the decoder side. Again here, there are multiple options. You can concatenate, here it is shown

as concatenation or you can do a resonate like processing where you can just add them. That is

also possible. And if the number of feature maps begins to difficult to handle, then you can just

do a 1 cross 1 convolution, reduce them and add or concatenate to the encoder side.

So as you go up the encoder, one of the things I have noticed is that you would take feature maps

from the decoder side at the same resolution and add it to the, sorry you take feature maps at the

same resolution from the encoder side and add it to the decoder side. This is very similar as to

what we saw with the fully convolutional networks, the first fully convolutional network that we



saw is to we take networks from feature maps from earlier in the earlier layers and add them to

the output. So this is done more systematically here.

So again at every layer in the decoder side, you would go and find a corresponding feature map

of the same size and of the same resolution and add it, this case you can do a resonate like a

residual connection or you can just concatenate, 1 cross 1 convolutions can also be done to sync

the size of the feature maps so that you do not have a feature map explosion on the decoder side.

And finally, you would produce an output with a requisite number of classes.

So you would do convolutions so that the number of channels for instance if you are looking at 5

classes, the output will have 5 channels of output with each channel corresponding to a particular

category and the pixel values in that channel representing the probability of that particular class

at that pixel value. So this is the very often use network for biomedical segmentation task. We

will look at an application that this can be used, later on in the next few weeks.

(Refer Slide Time 31:06)

Of course we have also seen dense nets. So what we saw, we can do similar processing with

dense nets. So instead of having these VGG convolution blocks, all you have to do is replace the

convolution blocks with a dense block and instead of Max pooling, we have the transition blocks

we saw, as we had seen earlier when we were discussing dense net. We used the transition down

blocks to bring down the resolution on the encoder size. Similarly, we have transition up blocks

on the decoder size to improve the resolution.



So this  has the same thing like we do deconvolutions  or transpose convolutions  as they are

called.  Deconvolution  is  apparently  a  wrong  nomenclature  because  deconvolution  is  well-

defined (())(31:50). So transpose convolutions are a more appropriate terminology to be used. So

the only difference between this network and the one we saw earlier in U-NET is that the VGG

type convolution blocks are replaced by dense blocks. So we can, so this particular architecture

which is basically the encoder and decoder, the idea is we can use any of the network topologies

we saw, architects that we saw in the which were used for the imaginative channels. And but of

course the only thing we have to do, on the decoder side we have to formulate the appropriate

channels or the architecture.

(Refer Slide Time 32:33)

So for instance, this is to just to illustrate again, if you go back to the U-NET architecture, you

see that this is basically this a this is nothing but your, this particular whole thing is nothing but

your VGG type block. Okay. So we have 64, 264, root 128 here and then we have two 256 and

then 512 and so on so forth. Of course VGG had three 512s blocks. But we can have a VGG or

Alex net on the encoder side and then we will just have to flip that on the decoder side. Of

course,  it  is  no  guarantee  that  all  of  the  network  techniques  should  work.  This  particular

architecture  actually  works.  We that  for sure,  they are being published and applied to many

image processing tasks.



In the next series of lectures we will consider transfer learning. Again, we will see how we can

use this pretrained the networks to and apply them for related tasks and how that will in the case

there is not enough data,  so and also followed by that we will  also look at  hyper parameter

optimisation.


