
Machine Learning for Engineering and Science Applications
Professor Dr. Ganapathy Krishnamurthi

Department of Engineering Design
Indian Institute of Technology, Madras

Lecture 50
Types of Convolution

 (Refer Slide Time: 00:13)

In this video we will look at the different types of convolution that are typically done in a

convolutional neural network and especially focus on the dilated and transpose convolutions

which are often used in deep networks and also in networks that have the encoder decoder

type of architecture.

(Refer Slide Time: 00:32)

So just to recap is what we call naive convolutions, so this is the typical convolution

operation that is done on a deep neural network. So we have a given kernel size, you have a

given kernel size K. stride use in the convolution and the padding and given as input feature

map of size I w and I s I h width and height, the output feature maps width and height are

calculated by this formula, so it is the size of the feature map minus the size of the kernel plus

2 times the padding divided by the stride plus one that sees width, so the typical same

formula applies to the height also.

So this is the operation that we typically see this is involves superimposing the filtered kernel

which shown in red here over the green input volume and then striding it across the input

volume. So just to illustrate so if you go back that is the first element calculated here by

superimposing the 3 by 3 volume and then once again we do the same by moving the filter

kernel by one side of in this case the side is actually 2 and though it is written as 1 here, it is

actually 2 slide of 2 and we repeat this calculation throughout the cross section of the feature

map.

(Refer Slide Time: 01:51)

Now dilated convolutions again or another that convolution that are used to increase the

receptive field of the convolution given the same figure given a smaller filter size, so it is a

cheap way of keep in the computational sense way of getting a larger receptive field using a

smaller feature kernel filter kernel. So for instance in this image we have this input feature

map in green and the filter kernel is of size 5 by 5 and as we saw earlier we just move the

filter kernel across the feature maps in order for us to obtain the output feature map shown

here, ok.

Now the idea is to use a 3 by 3 convolution with the dilation factor that can visualize the

same area as a 5 by 5 convolution while the number of parameters remain the same that is

basically you have 9 parameters instead of 25 parameters used in a 5 cross 5 convolutional

kernel however by having a dilation in there we can you we can get the same receptive field

size.

So how do we accomplish that? So what is shown here in this image is that there is this these

red elements correspond to the elements of a 3 cross 3 feature map and by you know

incorporating appropriately rows and columns of zeros, we are making the size of the feature

of the filter kernel 5 cross 5 and then proceed to do convolution as before, say so this is very

advantageous in the sense that you will add with little computational expense you are able to

get the same receptive field size.

If we recall as we seen earlier in order to get a receptive field size of 7 cross 7, it is the same

as during 3, 3 cross 3 convolutions in succession so that will be that is an increased number

of operations while in this case we get directly get a 5 cross 5 receptive field just by adding a

appropriately adding zero zeros and zero columns in the rows and columns of your filter

kernel.

The number of rows and number of zeros zero rows and zero columns that you add as they

first referred to as the dilation factor ok. So the just to recap the idea is to inflate the size of

your kernel by inserting rows and columns from zeros, so that you can get a slightly larger

receptive field.

(Refer Slide Time: 04:15)

The next topic is the transposed convolution, here the idea behind transpose convolution is to

aid in increasing the size of the output feature map and these are typically used in encoder

decoder networks especially on the decoder size so as to increase the size of the feature map

as you go towards the output ok. The idea is to regain the original spatial resolution not to

regain the actual feature map itself but just to have a just to regain the original resolution that

is the size of the feature map and you have to appropriately pad with zeros and also insert

zeros and rows zeros in rows and columns of your input feature map in order to obtain the

appropriate sized output, ok.

The good way of thinking about it is to see that it is how do the idea behind the transpose

convolution is we interpret the input feature map let us say the input feature map is of size 2

cross 2 ok and you also been given a kernel size ok let us say this is a 3 cross 3 ok, now we

want to get a certain sized output ok it is given let us say this is some m cross m we do not

care ok, so what we have to do is we have to understand this just as that you assume that the

input that you are given to the transpose convolution this is the input to the transpose

convolution is an output of as a direct conversion ok.

So we have to find out what feature map size when operated upon with the kernel size of 3

cross 3 ok given the padding and slide or given we will give this output size ok and dilated

conclusions we try to regain that particular we try to get the that particular input resolution

which is basically trying to reverse that operation, here once again to reiterate we do not seek

to get the input and in fact reconstruct the input feature up but just to regain the resolution.

The example given here, so you would you want to reconstruct this size right or you want to

reconstruct this resolution 5 cross 5 is your target output and your input is actually a 2 cross 2

feature map given by the screen squares, so it is actually a 2 cross 2 input your filter kernel is

of size 3 cross 3 given by this grey ok and you seek to obtain a 5 cross 5 output ok, the stride

parameters are given so if you think about it the idea is what filters what input feature size

when convolved with a feature map with the filter kernel of size 3 by 3 would give rise to a 2

cross 2 (out) output right, so that is what we would we would have to figure out.

So they turns out that this it is 5 cross 5 and the idea is we in order to regain this 5 cross 5

size we have to actually have these zeros zero padding on the outside so zero padding of 2,

and we also need to have this zero columns and zero rows inserted into the input feature map

of size 2 cross 2 and then proceed with the convolutions as before ok. So for instance let us

just understanding this better let us say your input size is 5 cross 5 ok and your kernel size is

3 cross 3 if you do a naive convolution then you would get the output size would be 5 minus

3 plus 1 which is 3 cross 3 ok, so which is not what we want.

So if you want to get a 2 cross 2 output what do we have to do? So let us say we have a stride

of we add a stride of 2 in which case your output size would be 2, 2 cross 2 ok, so if we have

a stride of 2 no zero padding and we have an input feature map of size 3 5 cross 5 and you

and your filter kernel is of size 3 cross 3 then you decide of 2 your output feature map would

be of size 2 cross 2, ok.

So now we want to reverse this operation, so since we have a side of 2 we insert 1 or s minus

1, we insert 1 row of zeroes and one column of zeros into the feature map of size 2 cross 2

right and there was no zero padding here so which means that we act so the everything is

reversed so that to understand this so since there was no zero of padding here we have to do a

zero padding when we do the transpose convolution if you think of it that way.

So we have a padding of 2 right, so in order to get the appropriate size which mapped on your

stride this one as before so and you stride is again 1, so if you do the convolution as like a

naive convolution or your usual convolution with this particular input size then you will end

up with you 5 cross 5 feature map ok, so this transpose convolution is typically is the one that

is often used in encoder decoder networks or in any situation where you have to up sample

your feature maps.

(Refer Slide Time: 11:03)

Another way of looking at it is that let us say you have a network right and bunch of feature

maps, this is CNN let us say typically where a bunch of feature maps ok, this is your forward

pass through the network ok, so you get an your output right so we know that to get from the

input output it is basically a sequence of matrix multiplication, so if the weights in every

layer is this w2 w3 so on just to be slack with the notation here so the output will be a

sequence of multi matrix multiplication right w 1 X and then you would have so on and so

forth right, this case there are L layers then you have W L X right, so this is your output so

during forward pass.

Now during the backward pass or back prop your gradients are propagated by transposed

matrix multiplication right, so error so the error you by you back propagate in this direction

so as you notice if your back (propatin) propagating the error from the smaller size feature

map to a larger size feature map which means here you are actually doing an operation which

is same as the transposed convolution ok, that is the way of understanding transpose

convolutions.

