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Norms 
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In this video we will be looking at an important idea, this is the idea of norms this is one idea

that we will be using throughout the rest of this course.
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So  norms  are  an  idea  in  linear  algebra  or  in  general  whenever  we  deal  with  tensorial

quantities.  The  basic  reason  why  machine  learning  and  many  other  fields  use  norms  is



because we usually use vectors or matrices as our basic units of representation. As we saw in

the last video we tend to use vectors and matrices very very often basically because that is

what we use in order to measure or in order to represent images, sounds or anything in fact

anything that goes our input or output is usually measured by vectors and matrices.

So there are two basic reasons that we use norms, one is to find out how big or small a

particular vector or tensor is sometimes we need to estimate the size of something. Now for a

scalar or if it is a scalar like a weight or pressure or temperature there is one single number by

which we can get the idea of how big this thing is, whether it is negative or positive the

absolute value usually denotes what the size is for a scalar.

For a vector we have no such single number of course vector is a bunch of numbers but

suppose you need a single number. So norms sometimes can be thought of as a mapping from

a vector or a tensor to a single number to scalar and actually this is a positive scalar. So we

will see how to do that in the rest of this video, there is another reason for which we use

norms.
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So for example let us say you have a vector of this sort, usually we will denote the size or the

length of this vector as square root of 3 square plus 4 square this is 5. So the usual notion of

length a norm is denoted by this sign usually a double bar sign just like for scalar we use

single bars for absolute values, for norms we tend to use this double bar, some people use

single bar also so we will see this notation a little bit later on in the video.



So whenever you hear me say norms please think of you know a simple vector for which you

are trying to find out the length essentially you are trying to find out one single number that

will represent the size or how big a particular vector is, there is another reason for which we

use norms which is to try and estimate how close one vector or tensor is to another, okay. So

once again I would like you to think about the idea of images in order to show something

which is qualitative where you can estimate this.

So please remember if you recall what we did in the previous videos, we had looked at a

whole image. So let us say you have an image of a cat or something and this is a 60 cross 60

image, we saw that this can be unrolled into a single vector which is of size 3600, each of

these represents one pixel, okay. So you have 3600 pixels, so it can be written as a vector of

dimension 3600.

So now you cannot really imagine this but let us assume that instead of this (this would) this

is just two numbers so it is as if it is an image of just two pixels, but suppose you have a one

whole image of 3600 pixels now you can start thinking about you can now imagine this is

one image and this is another image, okay of course we are representing it in two dimensional

space, so each of these points is a vector which represents one image and suppose you want

to find out is this image close to the other image, okay now how would you do that?

So that idea also basically would be how big the difference between these two vectors is we

know of course that the difference between two vectors is another vector. So if you have this

vector v 1, this vector v 2, v 1 minus v 2 is another vector and I could find out delta v is v 1

minus v 2 if I find out the norm of delta v, okay or the length of this vector which is the

difference of these two vectors that will tell me how close the two images are.

So a norm is supposed to represent both these ideas or atleast its used when both these ideas

which is essentially if you can somehow define one single number to represent the size of one

whole vector or one whole tensor then you have the idea of norm. So usually like I said just

now  you  can  try  to  find  out  how  close  one  sound  is  to  another  if  you  have  two

representations, how close one word is to another, how close one image is to another provide

you all of this can be represented as vectors and you can find out the norm of the difference

between the two vectors, okay.



So now let us see how to go about doing this. The norm is actually a generalization as you

can probably figure out of the notion of length, the idea that we have of length for simple

scalars can now or size of simple scalars to vectors, matrices and tensors. 
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So let us say you have a vector all my example which I show on the slide will be in 2D of

course  you can  imagine  this  being  extended  to  multiple  images,  okay. So the  numerical

example I will be taking would be that of a 3D vector. (Mathematics) Mathematically what

we  will  be  doing is  we will  be  trying  to  generalize  we will  find  out  what  the  specific

properties of length are which makes it intuitive and the useful notion for us in real life.

So the first notion which is very important is if you have a vector whose length is 0, then that

means it is a 0 vector. So the only vector which is of length 0 is essentially this vector which

is right at the origin, okay so that is the first property that any norm should satisfy that is if

the vector has length 0, then it must be the 0 vector, okay. So this is the definition of norm

that we will be using here.

The second property is the property of the triangle inequalities, so let us say you have two

vectors please notice I have flipped the arrow here just in order to be consistent with the

mathematics that I will be using. So let us say the first vector is x and the second vector is y,

okay. Now we know that x plus y has to be this vector here, okay going from here to here it is

a simple vector addition rules.

Now what the triangle inequality rule for the norm says is that the length of this has to be

always less that the length of this plus the length of this, we know this from the normal



triangle inequality that we use for triangles right from schools, the length of two sides is

always going to be larger than the length of the third side, okay the sum of two sides is

always going to be larger than the third side that is because the shortest distance between any

two points is a straight line.

So if I want to go from here to here, you know if I go that way that will always be longer than

this, so this is the normal triangle inequality rule it is represented as f, f you can think of a sub

function which represents a norm, norm of the sum of two vectors is going to be less than

equal to the norm of the individual vectors, okay it is a very very important property. The

third property that a norm satisfies is that of linearity, what it means is if I take a vector and

simply scale it up, take a string extend it by two times each of the coordinates will increase

by a factor of 2, so let us say if I increase it by a factor of alpha then its length also increases

by a factor of alpha, these are the three properties that any norm satisfies.
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Now based on these three properties that we just saw here the idea of 0, the idea of triangle

inequality  and the idea of linearity, what  we can do is  we can derive many many many

different functions that satisfy this, okay. So remember f the norm takes in a vector gives a

scalar which is positive and you need to define you can define many functions which satisfy

these three properties, okay.

So let us take a simple example, so we are taking the example of a vector which is minus 5 3

2, so let us say we have a 3 dimensional vector and we will see various norms that can be

used for this simple vector. The first and the most obvious norm is called the Euclidean norm



sometimes the Pythagorean norm, the Euclidean norm you will notice has a subscript 2 the

reason for the subscript will become obvious very shortly, okay.

So you have a vector all it is root of the sum of squares, so you take in this case you would do

square root of 5 square plus 3 square plus 2 square essentially what we usually call the length

of the vector, okay this is also called the 2-norm or sometimes also called the L 2 norm, okay

the reason for the L will not go over but usually you will see this term being used a lot of

times 2-norm or L 2 norm, okay.

So what is the L 2 norm of this case? It usually corresponds to our notion of distance so you

can immediately find out that this is equal to approximately 6.16. A similar norm is called the

1-norm please notice the subscript here, all it is instead of squaring and taking square root

you simply add the absolute values, okay. So in this case our 1-norm would be very obviously

I have written a MATLAB command here, but you can do it by hand in this case all it is

absolute of minus 5 plus absolute of 3 plus absolute of 2 which is equal to 10.

Now using these two you can generalize to the idea of what is called a p-norm, p-norm is

simply absolute of v 1 to the power p plus absolute of v 2 to the power p remember all these

are components, okay the whole thing to the power 1 over p, okay. So you will notice that

this covers both the 1-norm and the 2-norm and this kind of definition is valid for p greater

than equal to 1.

So usually you cannot define let us say a half norm or something but 1 and so on and so forth

you can define all other norms. As it turns out these two are extremely useful norms, there is

also a third norm which is very useful which is called the infinity-norm or sometimes called

the max-norm, so the max-norm simply is find out the maximum component  in absolute

values, so in our case max of absolute of minus 5, 3 and 2 which should basically the infinity-

norm will simply be 5.

So  you  can  check  that  MATLAB has  a  command  norm v  comma  inf,  inf  gives  you  a

maximum of 5. Now what is interesting is you can actually see the max-norm as a limit of the

p-norm as you keep on increasing p, okay. As you keep on increasing p, let us say the v 2th

component was the largest component what will happen is all the other terms will become

very very small as you keep on increasing the power in comparison to (v 1 to the power p) v

2 to the power p will be very very large as p becomes large and in the limit of infinity this is



the only term that survives and once you take a 1 over p what survives is the maximum-norm.

So this is either called the infinity-norm or the maximum-norm.

Now I want to emphasize that the most natural norm atleast the one that we think of very

naturally  is the 2-norm, none the less 1-norm or infinity-norm can also be useful.  Please

notice that each of these norms or all of these norms satisfy these three properties, okay we

are not going to prove this, we know that the Euclidean norm satisfy this by intuition just as a

quick check for example you can check that if you take the infinity-norm it is definitely going

to satisfy this, the only way in which can infinity-norm can be 0, that is the maximum of the

absolute value of something can be 0, if all the components were exactly 0.

Similarly if the sum of absolute values is equal to 0, the only way that is possible is each of

this individual this should be v 2 (I am sorry) each of this individual components is 0, okay.

So these three properties are satisfied by all of these three norms. Now all these norms as I

have showed them apply to normal vectors you can actually extend this idea to matrices also,

the idea of norm is true for vectors, tensors and matrices. The definition remains the same or

atleast the properties remain the same x instead of being a vector becomes a matrix.

You also have 1-norm, 2-norm, infinity-norm for a matrix, but in machine learning the most

common norm that we use is what is called the Frobenius norm, Frobenius norm is very

similar to the Euclidean norm all it is you take all the components of a matrix, so let us say I

have a matrix here 1 2 2 0, the Frobenius norm of the matrix is square root of 1 square plus 2

square plus 2 square plus 0 square basically some of the squares take the square root, okay

that is the Frobenius norm, in this case this is square root of 9 which is equal to 3, okay. So

that is the Frobenius norm.

Please notice the Frobenius norm denoted by A subscript F is not the same as the matrix 2-

norm, okay there is some such thing as the matrix 2-norm or the matrix you know L 2 norm

that is not the same as the Euclidean norm, so there is a slight difference there none the less

the Frobenius norm is probably once again the most common thing that you will think of,

immediately if you want to find out one number that represents the size of the matrix.

So this is the idea of the norm we will be using this repeatedly again and again through the

rest of the course, one of the main uses that we will be using it for is you know as you are

using  iterative  procedure  for  a  vector,  okay so  suppose you are  trying  to  find  out  some

particular parameter vector or some particular image and you are trying to go slowly go there



through an iterative process your initial guess is bad and you are slowly getting there, you

want to find out how close each guess is to the final guess and one of those ways to find out

is as we saw earlier find out the difference between the two and take there norm. So we will

be using this repeatedly through the rest of the course, thank you.


