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Welcome to  the  series  of  lectures  on  convolution  neural  networks.  CNN are  basically  a

special class of artificial neural network that you see in regular neural network which expect

images as input. They are designed to work on images mostly to handle computer vision

problems like artificial neural networks that you have seen before the regular artificial neural

network, these network also have weights, neurons and bias units and the weights in these

CNN are also estimated by optimising an appropriate  objective function because input to

these networks or images it allows for 2 things one is fast connections we will see what those

are as we progress as well as parameter sharing and because the images are used as input

these 2 concepts are possible basically it is possible they have sparse connection as well as

sharing of weights between the output neurons in a layer.
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CNN in the recent past and of course especially since deplaning has taken off has found used

applications  basically  in  image  recognition,  object  detection  and  localisation,  semantic

segmentation  and medical  image  analysis  these  are  some of  the  areas  where  CNN have

shown extremely good performance on many benchmark problems and are now being tried

out for many commercial applications.

(Refer Slide Time: 2:00) 

So for instance let us look at this particular application, so this is an image from the wild its

images showing rural scene somewhere and give this image is given as input to the Google

cloud vision program it is really available and you can try it out then it automatically gives

you describe the image as saying it is a herd there is a 91 percent probability that it has goads



them and there is actually a herder in there. It also identifies grass, it also says livestock in

this case and that this guy is the man in the pictures is actually herding, so this level of detail

is possible this is (())(2:46) performance is possible with current sceneries. 

Here is an output from another CNN from Silver Pond it is an object detector, so it is able to

identify the man in the picture as well as the goat. However it does label it wrongly as I think

a horse okay, so it  is  able  to localise  as well  as identify the objects  okay it  is  a typical

application that you would do with… in a computer vision and this not too hard to think of

some very… What everybody now talking about is self-driving cars you can see that if you

have vision system in our self-driving car and you can and it performs well that you can

identify obstacles or you can identify a pedestrian or signals or lights, zebra crossing et cetera

and act accordingly. So this is a typical application in computer vision.
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CNN also finds applications in image analysis and in this case we are looking specifically at

medical image analysis, so if you look at this image here on the left it is an image of a brain

MR image  of  the  brain  it  is  been  pre-processed  to  some  extent,  so  you  can  see  some

abnormalities here and there okay and what you see on the right here are basically the pixel

labelling task done by a CNN where it correctly identifies or fairly correctly identifies regions

that appear abnormal. 

The  various  color  schemes  here  corresponds  to  different  types  of  classes  within  the

abnormality itself. There is a huge advantage in terms of at least in medical image analysis

wherein you know this is just one slice in a brain, so a typical medical image where there are



hundreds of such slices going through a particular anatomy and going through them manually

and labelling each of these boxes by hand is pretty much (())(5:01) and very error prone task ,

so this can actually serve us huge support for a radiologist who can who look at these kind of

images every day for interpreting them and diagnosing patients. 

(Refer Slide Time: 5:15) 

So what we have here representative images from the image net database, now this image net

challenge, visual recognition challenge is been going on for quite a few years now basically

the challenge organisers make available to you millions of images drawn from the wild from

Internet and labelled by expert as belonging to one of thousand categories and the challenges

to create a visual machine learning on the (())(5: 42) system that when given an input image

from a test set, you again containing several hundreds of thousands or millions of images. A

test image is able to correctly classify it okay. 

So shown here are several images, so this is actually image of sidewinder I have already

marked it with red and this is actually marked as a hot shaped that is the correct level the blue

shows the correct label and this is again schipperke, I actually do not know what that is but

anyway, so these are some of the prediction made by typical network which are staying on

the database. The challenge is that the correct clash should be among the top 5 prediction of

your system okay, so over the last few years these CNNs have proven to have outperformed

many other systems, AI systems trained for this task. Human error rate itself is around 5 to 6

percent and there are now large CNNs deep CNNs which out-performed this. 
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So for instance if you look at the accuracy of some these are the names given to a different

Convolution Neural Networks by the authors who build them or the people who worked on

them. Now the top 5 accuracy (())(7:08) is pretty impressive it  is almost  about 95 to 96

percent which is approaching human top 5 accuracy okay. We will see what this means the

parameter of the network, the depth we will see later what it means but parameter of the

network are basically the number of weights in the network. They range from million to 140

million okay so overtime people have started with started off with a very large number of

rates and over time the network have trim down they have gone deeper but they have manage

also to reduce the number of parameters in the network and also improve the top 5 accuracy. 

(Refer Slide Time: 7:51) 



Okay so before we move onto what CNN’s do and how to build your own CNN, let us look at

how images are parameterised okay, so we saw earlier that CNN’s take images as input, so

what does it mean so you know that for an artificial neural network the input is usually a

vector, vector of values or labels or some categorical label if you want but as far as CNN’s is

concerned the Convolution Neural Networks is concerned the image is an input, so there are

different types of images grey scale as well as RGB, so what do you mean by saying images

input. 

So if you take grey scale image here is a digit, image of a digit 8, so you can think of the

image as being made up of… so this is actually a matrix so this is actually a matrix it is a 2D

matrix and image is made up of pixels with each pixels having a particular numerical value,

so this whole image is actually a 2-D matrix and if you can think of it as like a grid I can

draw some crude bread like structures here and it is very close view of the image, so at each

grade point there is a numerical value associated with it. 

So that is the pixel value so in a typical image for instance the image is that you take with

your camera the values of the pixel range from 0 to 255 they refer to as 8 bit images and the

dimensionality of the input is basically the size of your 2-D matrix, so you might have x

pixels on the x-axis and ny pixels on ny axis, so your image input is of size nx times ny, this

is your input. If you want to think (())(9:58) in terms of artificial neural network your regular

artificially neural network you have an input vector of size nx times ny. 

The given example EMIS database has images of digits which are of size 28 by 28 pixels so

that means it is a 4 vector of size 784, so as far as greyscale images is concerned you can

think of them as a 2-D matrix dimensions nx cross ny depending upon how many pixels are

there along the x or y axis and if you (())(10:48) in terms of regular ANN the size of the input

is basically the total number of pixels in the image.
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Now by images  we also  mean RGB images in  that  case  let  us  take  a  color  RGB mean

basically  typically color images if you take an RGB image we can extract the individual

channels in RGB image. So an RGB image consist of 3 channel R, G and B. Each channel

itself is… each channel is an image and the pixel values in each of the channel it is range

from 0 to 255, so what we get as an RGB see as visualize as an RGB image is basically the

combination of these RGB pixel values. 

So if you want to give a CNN and RGB images as input which means that so you have for

every image nx pix ny, nx times ny pixels as the input, however there are also 3 channels as

they are called. What is the terminology typically used in CNN’s? So your input is basically

nx cross and ny cross 3, size of your input. Once again as before if you want to think in terms

of regular ANN’s you have to rasterise the image and making into vector of size nx times ny

times 3. So the CNN basically takes if you can generalise CNN basically takes a volume as

input by volume I mean that you have a pixel array of given size nx ny however there can be

multiple such array which gives rise to volume. CNN takes as volume as input and assigns

that volume to a particular class label based on your object (())(12:45).
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So since we can rasterise these images so we can read out these pixels values one at a time

and form a vector and then why not we just go ahead and use a regular artificial  known

network. Now if these images are small let us say if we have a 32 by 32 image or 30 by 30

images for the sake of calculation so you have 30 times 30 image. There are 3 channels okay

so basically 2700 input neurons for a regular ANN okay so you will have over 2700 neurons,

however most regular sized images of the order of 220 or 256 times 256 and if you have 3

channels, so this is already of the order of 10 raise to 4 and 10 raise to 5 neurons okay. 

So which means that if you are (())(13:58) we want to get a hidden layer of 1000 neurons

which will give rise to 10 raise to 8 weights this is a very conservative estimate because

sometimes the images are (())(14:11) just 1000 by 1000 or 512 by 512 especially medical

images are quite large, so as the size of your input image is increase ANN’s do not scale very

well  so they are unable to handle such…the number of weights or there is (())(14:26) of

number of weights that has to be estimated using ANN that means that proportionally a large

number of data points are required. 

Another aspect of why you should not use ANN this because ANN’s once because if ANN’s

takes as input vector so which means that even if you are given an image we have 2 victories

it by rasterising it and in that process we will lose the spatial structure of the data okay, so

images have spatial structure which is what we want to exploit by using a CNN and in the

process we also as we saw earlier exploit 2 more things we get as sparsely connected network

which means that there will not be as many weights as artificial neural networks. In addition

there  is  also  a  parameter  sharing  which  again  reduces  the  number  of  weights  and  the



parameter  sharing  which  in  turn  enables  us  to  exploit  the  local  connectivity  of  neural

network. 
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The parameter sharing enables us to exploit the local connectivity in an image, so what does a

CNN consist of okay, CNN’s like ANN’s consists of sequence of hidden layers but these

hidden layers are basically convolutions or pooling, so we will see what these are in later

slides but it is an alternation of convolution and pooling layers followed by a series of fully

connected layers just like in artificial neural networks leading to a classification layer. This is

a typical structure of a convolution neural network. 

Now why do we have this kind of structure, what is this convolution doing here? What does it

mean? What does convolution accomplish? We will examine that okay before we go there

will also look at…just to summarise CNN’s take as input must (())(16:30) saw earlier images

but these images can have multi channels, so simple example being a RGB image which has

3 channels, so they take as input a volume and in each layer in a CNN outputs are volume

irrespective of whether it is a convolution or a pooling layer okay this refrain from contrast to

ANN’s where the output is based on every layer is basically another vector of neurons.
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Just to summarise again in visual form of convolution layer takes us so in this case the input

is an RGB image and we will not know we will not look at what the operations are right now

but the output from a layers is basically a volume here where if you can slice the volume this

way okay then have multiple outputs or multiple 2-D outputs, each of these are 2-D map.

Each of these 2-D outputs is often referred to as a feature map or an activation map so the

number of output features map or the activation maps is entirely within our control we will

see how that can be defined okay and the size of the 2-D map the nx, ny (())(18:15) 2-D map

again is determine by the operations we perform. 

Similarly even for a single input channels, so this is for 3 input channels so irrespective of the

size number of channels in your input you can have multiple channels in your output this is

true of every layer, so for instance if  you take this  layer this  can again undergo another

convolution leading to even more higher number of activation maps being output we will see

that in some popular CNN architectures later on.
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So why convolutions or what do these convolutions accomplish, what are they inspired by?

We will look at what exactly convolution do but before that…so in 1960s Hubel and his

colleagues did series of experiments measuring the activations or signals from neurons in the

primary visual cortex of cats okay. We will not go into exactly how they did the experiments

but these are biologist they knew what they were doing. 

They eventually won a Nobel Prize for this work, they found out that in the primary visual

cortex, the primary visual cortex in turn we will see later will take its input from the retina.

The retina is where what we see is projected so our eyes, the lens of our (())(19:30) projects

whatever we see on to the retina, so the primary visual cortex and the signal from the retina

goes to the primary visual cortex. So the primary visual cortex they found out have 2 types of

cells, neuron cells, a simple cells. 

Simple cells of course they get their signals from the rods and cones in the retina and the

simple  cells  respond  to  adjust,  so  they  have  very  good  response  to  adjust  of  different

orientations and it was a linear response okay and then there are other types of cells called

complex cells which seems to take input from the simple cells, so a linear combination of

input from the simple cell and had an nonlinear response. One aspect of it was that it was

insensitive to translations, so you can move an edge across the eye or have a project an edge

on the retina of the eye and move it across the retina but the output from a complex cell

would be the same that is what it means. So they concluded that the visual cortex have these

2 types of cells and this behaviour they characterised okay. 
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So this was the inspiration for…so if you want to look at it, so this let us say is your eyeball

and this is your retina right here. The simple cells here take as input signals from a particular

region this is the region, small region here for this cell, so this is called the receptive field of

that particular cell or group of cells, receptive field okay. So what it does is it does a linear

combination of the signals from the receptive field and provides an output okay. 

Similarly there are bunch of these simple cells each has its own receptive field in the retina of

the  eye  and  they  in  turn  provide  an  output  and  this  complex  cell  takes  a  weighted

combination of these inputs and provides an output and it is nonlinear output okay from the

cells. So this is the inspiration behind CNN’s, so they try to mimic this vision this is of course

the general wisdom that goes around but (())(22:04) that is not a very good understanding…

There  is  a  lot  of  progress  in  this  field  that  how vision  system works  but  this  is  a  very

simplified like I said cartoon version in my case that is what I have done here cartoon version

of how the vision system works. 
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Another way of looking at it is why do you use convolution is that if you go back to signal

processing or conventional image processing techniques it is well-known that if you have an

image is we can define filters or what you call  kernels okay, you can have filter  or filter

kernels as they are called ill which if you operate on an image should be able to extract

different features from it,  so in this case I have shown a very simple kernel say 1 row to

column is 1 cross 2 filter kernel, so all you have to do is superimpose it on the image, so this

is 1 and minus 1 multiply with the underlying pixel values and add them. 

You can see that by applying this filter kernel and of course translate and do the same thing

everywhere okay. So if you do that all across the image then you will get the edge map. Now

it is possible to construct by hand different filters like these which will highlight edges at

different orientations. So there are multitudes of filters so for instance there are sobel filters

or prewitt filters and so on which has been already which mean they have… It is well-known

in I  mean in traditional  image processing literature  that  these filters  can use to highlight

adjust an image which is very similar to what we saw with how the simple cells work is

basically remove this kernel so the receptive field for this kernel is about 1 cross 2 okay. 

So we can make 3 cross 3 so bell filter so the receptive field for that filter is a 3 cross 3 region

in the image let us say if you define a 3 cross 3 filter and this will be receptive field of the

filter, so the idea is if we define enough filters then we will get a variety of edge map this is

just one… we can call this the first convolution layer and then we do more combination of

those edge maps to get may be higher order description of the image, so what these filter

kernels exploits is that the edges in an image are similar everywhere, so for instance if you



have a vertical edge somewhere in an image, in one region of the image let us say there is an

edge in this case there is an edge here. 

I have a similar edge here too the orientations are different, right so you can have an edge

here which is very similar to the edge (())(25:17) pointed out like this edge here and this edge

here are the same very similar. So if I define a filter that picks out an edge at that angle I will

say that is an 45 degree edge than I can use it all over the picture to highlight that particular

edge okay, so this is what is parameter sharing is all about in the sense that for every… for

identifying a particular feature I do not need to define a new filter for every region in the

image. It is the same filter that I can apply for wherever there is an edge at this particular

angle  that  filter  will  pick  it  okay. This  is  another  way of  looking at  convolution  neural

network okay. 

(Refer Slide Time: 26:01) 

So what does convolution accomplish? So like we saw the convolution neural networks same

structure as artificial neural networks there is an input layer forward by sequence of hidden

layer and then there is output. Now the output of any hidden layer and in for general you can

think of input as also as a layer in the network, so the output of every layer, the neuron in the

output of every layer is connected to a small neighbourhood in the input that is what the

convolution kernel accomplishes, the filter (())(26:36) that is what it accomplishes and the

connection is through a weight matrix which we call the filter or a kernel okay. 

For every convolution layer we can just define multiple filter kernels and the way it works is

that we move the filter kernel around the image at every region and every position that we



move it around to, we multiply with the underlying pixel values and add them of up so it is a

sum of  products,  so which gives  rise  to  a  corresponding output,  so since  we can define

multiple filters in every layer we can stack the output of each of the filters by obtained by

applying each of the filters in the input and giving rise to another volume of hidden neurons. 

(Refer Slide Time: 27:31) 

So let us just look at how a typical convolution works, so let us just look at how a typical

convolution works, so what we see on the left her is your toy image can call it, it is a 5 by 5

image and on the right is your 3 by 3 convolution kernel okay, so how does one actually

perform the convolution that is what we are going to see. 

So it is very simple all you have to do is superimpose the convolution kernel starting at some

point at the top left part of the image you can start from anywhere typically top left corner of

the image multiply so just it will be 1 cross 1 times 1 plus 0 times 1 plus 2 times 0 plus 1

times 1 plus 2 times 1 so on and so forth and you multiply and you add so it is a sum of

products, sum of the corresponding elements which means that the corresponding elements in

the image with the filter weights. 

So that give rise to one element in your output feature, so next step is to slide the kernel to the

right or by 1 pixel and perform a similar operation, we can keep doing that because once we

hit the edge of the image, so now if we go any further then the filter will not fit completely in

the image, so we will stop there and then we move 1 pixel down and continue to do so and at

every point we placed the kernel, we multiply with the underlying pixel values add and then

obtain the corresponding output there. 



So as we move through we see that at every position we perform the same operation and once

again (())(29:24) here and if you go down any further if you move the… shift the filter down

any further then it will not fit inside the image, so we stopped right there will. So in general if

you have an image or input of size nx times ny and your filter kernel is of size fx or fy. Your

output size will be nx minus fx plus 1 and ny minus fy plus 1 okay so this is the basic output.

So you see that as we do the convolution the output size keeps decreasing and there is a way

to stop that, we will see how that is done in a more systematic way but this is typically what

happens when you do convolutions. 

So at every convolution layer you will define a multitude of these filters, so when I say define

you really do not know so because these are the weights right these are similar these are the

equivalence of the weights in your artificial  neural network, so that is  what we typically

estimate in artificial neural network, the weights of the network by optimising an objective

function. In this case we will determine the members of the filter kernel again by optimising a

suitable objective function. 

So at every layer given an input we can define many such filters kernels so we will define K

filter kernel K can be any…very large number so for (())(30:59) there are instances there are

networks which define 512 such filters in every layer okay and so the output would be K

feature maps of each of this particular size, so typically in every layer each of the filter maps

are of same size even though there are exceptions which we will again look at later and later

videos, so typically you also… For instance you would… 1 layer would contain you would

define 3 by 3 filters about 256 of them. All filters would be of size 3 by 3, so all the feature

maps would be of the output feature maps would be of the same size but they will be about K

(())(31:42).
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Now in this another operation which we define there was pooling, so following convolution

or a series of convolution there is also pooling. What does this pooling accomplish? One of

the major advantages it supposedly gives is the translational invariance, so it is very easy to

visualise. If you have an object in your picture and you are trying to localise it let us say you

are using the neural network, now if keep subsampling the picture let us say you subsample

the picture from 256 cross 256 to 32 by 32 right? Almost a factor of 8 reduction factor 8

reduction okay and almost or exactly a factor of 8. 

So let us say if the object moves around inside this image, inside the 256 by 256 image. If it

moves less than 8 or 16 pixels you hardly see a motion in the 32 by 32 image, so basically

what this pooling performs is a subsampling operation. It reduces the size of your feature

maps and as you build more and more layers it comes to a point where in very large motion

of…so the network kind of becomes invariant to very large motion of the object you are

trying  to  detect  in  your  main  image.  Typically  average  pooling  and  Max  pooling  are

commonly used. 
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We will look at Max pooling average pooling should be a value obvious, so let us take this

feature map of size 4 by 4, this is of size 4 by 4. A typical Max pooling operation would be

to... It is again you can think of it as using a kernel, so you define a 2 by 2 kernel here okay

and what max pooling does is to look at the maximum value inside this 2 by 2 space, right so

here it is 6 and the way Max pooling is done unlike we saw that for convolution you just slide

the filter kernel by one, here you slide the…you do not have overlap. 

So you would side so that there is no overlap you can also skip we see that (())(34:02) is tried

and there is no overlap and in this window 8 is the maximum. Similarly here is 3 in this

window 3 and in this window 4 is the maximum, so if you do Max pooling of size 2 by 2,

right with a stride in this case, the stride is how many pixel do you move before you do

another Max pooling operation, in this case you move 2 pixels so the stride of 2 then you will

half the size of the feature map. 

So this is the function of the Max pooling so if you want to be very systematic about it you

would try to retain the size of your feature map when doing convolution we will see how we

can do that and we will try to…any subsampling will be done during the pooling operation.

For average pooling instead of the Max value you will take the mean of the values inside this

2 by 2 neighbourhood.
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So we saw that… we mention earlier that the neural network, the volume metric convolution

or volume convolutions are done okay, so what do you mean by that? So because whatever

you have seen so far we are usually defining the filter  kernels to be of a 2 by 2…as a 2

dimensional matrix right, so for instance we have a 3 by 3 filter kernel right? So fx and fy so

what do you mean by volume matrix convolution? How does it work? So let us take this

particular example, so input let us just look at the input layer it generalises to all layers, so

input layers is an RGB image we have 3 channels, so RGB so input is 3 channels, so basically

our input size is nx times ny times 3 okay. 

This 3 is each of them the R, G and B channel and each of them is an image, now when you

perform a convolution, so let us say we define a 3 by 3 convolution and it need not be a 3 by

3 can even do a 5 by 5 convolution just to prevent any…if you are uncomfortable with 3 by 3

you can use 5 by 5 kernel it is easy to draw that, so this is your filter let us say you are doing

a 3 by 3 convolution on your input image which has 3 channels. Now even though we say 3

by 3 the filter itself would be defined as a 3 by 3 times 3, so there will be a filter which

operates on the blue, green and red. 

Each of them would be operated on by a 3 by 3 concurrently okay, so a neuron in one of the

output feature maps is the sum of all the outputs right, so we saw earlier so when we go back

to these slides but in video we see that we saw earlier that we superimpose the filter kernel on

a region at a location in the image multiply with the underlying pixel value to get one output

this  is on a 2-D feature map, 2-D input and 1 filter  kernel.  Now we have in this  case 3

channels, so the filter kernel itself is 3 by 3 by 3. If we had 5 channels as input then the filter



kernel would be 3 by 3 times 5 with 45 here it is 27 values here it will be 45 values that we

are…plus a bias units if you want to include the bias okay. 

This is how volume metric convolution are done, the filter acts across the channels or across

the volume okay, so in this case the output let us say we have defined K filters of size or

particular size then it will give you K feature maps okay. Now if I do 3 by 3 convolution we

are actually using 3 by 3 times K size filter to operate on this feature, so it will be 3 by 3 but

it will act across the feature maps. So this is what we refer to as volume convolutions that it

takes… the number of input channels can be variable. 

So typically you will only define 3 by 3 or 5 by 5 filters but it is implicit that those filters also

act across the channels depending on how many channels you have as input and all the values

in the filter kernel will be unique, so in the sense do not think that if you define a 3 by 3

kernel let us say or in this case for simplicity 2 by 2 kernel, let us say you define it like this

something of that sort okay, so this is not duplicated across the channels right so you will

have… so if we have 3 input channels there will be times 3, so this is 2 by 2 times 3 this is

the size of your filter kernel and this have as many unique elements as determined by your

back (())(40:01). So their weights will be estimated like that way okay. This is important

point understand because many beginners really falter here sometime to understand this okay.

(Refer Slide Time: 40:15) 

So how do we determine the size of the output volume and we have seen some hints so far,

we will just do it very systematically. See size of the output volume or the feature map it

depends on the size of the input and we saw that, the size of the filter kernel we are using,



how much zero padding we do we will see why we use zero padding and the stride in the

network okay.
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So padded convolution, why would you want to do padded convolution? So we saw earlier

that when we do a convolution with the 3 by 3 kernel the size of the output was less than the

size of  the input  okay. Suppose we want  to  preserve the size,  the reason is  if  you have

multiple convolutions layers…as you do more and more convolution at some point the size of

the feature maps will become so small that you cannot do any more filtering, so it actually

adds restrictions on how deep you can go okay. 

So in order to avoid that we sometimes would like to do padded convolutions, so all we have

to do this is our input feature map size again we will just operate with one feature map at a

time. It automatically applies to a volume, input volume so it is very difficult to show it on

screen that way, so we have input image of size 3 by 3. This very simple so if you apply this 3

by 3 kernel on this 3 by 3 image your output will be 1 cross 1 that is typically what we get but

then you cannot do subsequent filtering on top of that it becomes difficult. 
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So to preserve the size of a feature map, so you will padded with zeros all around, so this

corresponds to padding of 1 which means that you will pad with one on the left right top and

bottom of the picture and if you do a convolution with this then you see that your output it is

very similar to what we did earlier you will position your filter kernel at the top left and then

move  it  around like  you do for  regular  convolution  except  that  now you  have  added  0

everywhere but then by doing this by adding zeros everywhere on the edges we get an output

feature map of size 3 by 3 okay. 

So this is the idea behind padded convolution is that it helps to preserve the size of your input

of course you can add more zeros to it, it will be just slightly larger feature map you will get

there but you can add more zeros but typically it is done to preserve the size of your feature

map and zero padding is determine buy the size of your feature kernel, so in general we will

just use square feature maps as input, so if size of your feature map on one axis is N okay we

saw that if we use a filter kernel of size F then the size of the output is n minus f plus 1 okay. 

So if we have a padding of size P in this case P equal to 1, n minus f plus 1 let us just write

this more clearly alright, so output is n minus the size of the feature kernel plus 1 and plus 2p

okay, so in this case our original n was 3 our filter kernel size was also 3 plus 1 plus padding

is one, so 2 times 1 so we will get 3. So if you want to preserve the size of the feature map

following the convolution then you would want 2p f minus 1 or p is f minus 1 divided by 2

which is another reason why we would like our f to be odd. It is easier to otherwise you will

get some fraction of values and you have to do rounder or slower or several adjustment have

to be made down streams you can work through that, so typically will work with odd size

filter kernel, 3 by 3, 5 by 5, 7 by 7 so on and so forth so that this calculations are simplified. 



(Refer Slide Time: 44:57) 

Another operation that we typically do or strided convolutions again we saw that with the

convolution the size of the feature map reduces, however it reduces gradually if you shift the

feature map by one every time, so the slide of 1 is typically what by 1 pixel every time, so the

stride of 1 is typically what we do, however if you have let us say a very large feature maps

and we want to subsample it quickly otherwise memory becomes an issue then you do stride

at convolution. It is very simple strided convolutions are very simple to understand except

just that you skip a few pixel instead of moving the kernel on the image one pixel at a time

you would skip multiple pixel at a time and how many ever pixel you skip is basically the

stride you are using. 



(Refer Slide Time: 45:47) 









So stride 1 is what we saw earlier is typically how we would go but for stride let us say 2 we

saw that for if you let us say if we want to do convolution stride of 2 then we saw… we

usually start from the top left right here okay and we just looked that we skipped this okay at

side of 2, so it moved 1 2 pixels and then you get the corresponding output there. Once again

as you go down you will skip 1 2 and you will position the kernel there and of course you

would do one more skip to get there, so typically you should have obtained 3 by 3 output but

because  of  the  stride  you  will  get  a  2  by  2  okay,  so  the  general  formula  for  strided

convolution again giving the size of your feature map is n, square n. 

You know that n minus f plus 2p divided by the size of your stride plus 1 okay, so in this case

it is very easy to verify. Your input was 5 feature map the filter kernel size is 3. There is no

padding stride  off  2  plus  1 you get  2  by 2 feature  maps,  so you subsample  we quickly

typically okay. You typically work with odd sized odd number filter kernel 3 by 3… not odd

number filter kernel sorry, the size of the filter kernel is pretty odd number so it is convenient

to make this calculations because you have to make sure that at some point you do not run

into this factional value and it will be difficult to resize your features maps. 

So we typically work with this odd size filters, so that it enables you to do these calculations

and end up with whole numbers rather than fractions okay, so to summarise briefly what we

have looked at  so far? We have looked at convolution neural networks, we see that they

have… they are made up of a sequence of convolution and Max pooling layers leading to a

fully connected layer and the decision layer. 

Convolutions are basically done by defining filter kernel is at every layer in your network, so

every layer you define k filter kernels and the convolution is done by moving the filter kernel

across the image at every point multiplying with the underlying pixel value and adding to get

the output. Max pooling is done to reduce the size of your feature maps, so we repeat these

layers eventually leading to a fully connected and the decision layer, so we have not seen

those yet I have also not mention that there is a non-linearity there of course because this is a

neural network, so following a convolution you usually do a point wise nonlinearity. 

So what do I mean by that let us say for instance, so in this case I have done a convolution

with a stride. I would take these values, so this is what you would typically see in your ANN

as a transpose right where in this case that W is the… Or the elements of your filter kernel

and the x comes from the pixel values here, so you would pass it through a nonlinearity. Like



a (())(49:49) for instance, so every activation in the output feature map will be put through a

nonlinearity so that layer is always there. 

So convolution followed by nonlinearity is typically done that is a usual thing, so you have

a…so if you…in the deep learning (())(50:08) you will call it a linear layer which is basically

w transpose x as we saw that, so are just some of products followed by a nonlinearity, so

convolution nonlinearity followed by Max pooling and so on, so this typical  sequence of

operations that are done in a convolution neural network. 

So we will  in the next few videos look at  a typical  construction of a convolution neural

network.  See what  the layers are and how we define these layers,  how we would define

number of kernels in every layer and what it would look like and how we would progress to

let  us  say  a  fully  connected  layer  and  then  to  a  distant  layer  or  can  we  skip  the  fully

connected layers or not? That is another aspect that you would like to look at, so this will

cover in the next series of lectures.


