
Machine Learning for Engineering and Science Applications
Professor Doctor Balaji Srinivasan

Department of Mechanical Engineering
Indian Institute of Technology Madras

Summary of Week 5

(Refer Slide Time: 00:13)

In this video we will just summarize what all we have seen in week 5 and also what we did

not see in week 5. And just to give you a preview of next week what we will be doing.

So what we saw was when you have a linearly separable classification case

(Refer Slide Time: 00:37)

that is if you have data points which can simply be separated by a line such as this data set.

(Refer Slide Time: 00:48)

In such a case you could use logistic regression.

(Refer Slide Time: 00:58)

Logistic regression or binary logistic regression can be used when there are just 2 classes.

And the same idea we saw could be extended to k classes

(Refer Slide Time: 01:14)

using multinomial logistic equation.

In both these cases the major differences were simply in the forward model. The forward

model for logistic regression was sigmoid of w dot x. And

(Refer Slide Time: 01:35)

for multinomial logistic regression was Softmax of w dot x.

(Refer Slide Time: 01:42)

Now apart from this we also had our loss function which was the binary class entropy loss

function for logistic regression. And in the case of multinomial we saw that it was a simple

extension. It was a general cross entropy loss function there.

In both these cases it was fairly straight forward in calculating del J del w. It turned out to

give us the same expression as before which was y minus y hat times x summation from i is

equal to 1 to m.

(Refer Slide Time: 02:18)

Now this followed our general machine learning paradigm which is, you take x, guess a w,

get a y hat back propagate. This is what we did in logistic as well as multinomial logistic

regression cases. Therefore these, when we tried this for XOR we saw that it needed an extra

layer in the middle.

(Refer Slide Time: 02:45)

It is not possible to simply take an input and map it directly to an output

(Refer Slide Time: 02:50)

without any hidden layer.

However with the extra layer it is possible, it can be proved that you have universal

approximation here which says

(Refer Slide Time: 03:04)

that any function can actually be approximated to an arbitrary degree of accuracy provided

you are willing to increase your number of neurons. It is possible to approximate any function

to an arbitrary degree of accuracy using one single hidden layer.

Neural networks however use more than one hidden layer and there is some disagreement on,

in the literature on this.

(Refer Slide Time: 03:33)

More than one hidden layer and this is what is called

(Refer Slide Time: 03:43)

deep learning. Deep learning simply means greater than one hidden layer.

(Refer Slide Time: 03:51)

That is typically what is called deep learning. There is some disagreement in the literature on

this, on how many layers should you take, or should you even just make do with one hidden

layer.

Some people are of the opinion that with certain tricks you can get by, but generally the

observation is you get fewer neurons and fewer weights the deeper that you go, Ok.

Now in order to train deep neural network you need however back propagation algorithm of

which

(Refer Slide Time: 04:21)

we saw the rudiments in the previous video. Now one thing that tends to happen is if you

recall our expression was delta l plus 1 was delta l times g prime z.

Now notice this term g prime z. When you have a sigmoid this g prime or the slope of the

sigmoid can actually get small,

(Refer Slide Time: 04:55)

further and further away from this central portion which has

(Refer Slide Time: 04:59)

high slope. Further and further away you get, this can get very small. And it can keep on

multiplying.

So you have delta 3 is some small number, let us say point 1 multiplying delta 4.

(Refer Slide Time: 05:15)

delta 2 will be that small number multiplying delta 3, so on and so forth.

(Refer Slide Time: 05:21)

So if the small numbers keep on multiplying, it can actually get very, very small and it can go

below the machine epsilon and then network will, what is called, it will not train.

(Refer Slide Time: 05:39)

Similarly here too it will stop training. This is called saturation, that is your value is so close

that your slopes are very, very low. And this is the problem, fundamental problem in training

deep networks.

You tend to get one of two

(Refer Slide Time: 06:00)

problems which you will also see in the next few weeks which is either of exploding

gradients or of vanishing gradients. That is, w actually completely blows up of which we saw

few examples even during linear regression. That was due to improper gradient descent.

Or you could have something which you think should train but it does not train. And this is

where a lot of neural research stagnated.

So there are tricks in order to do this and you will see Doctor Ganapathy will discuss several

tricks for this in the context of convolutional neural networks next week. What is it that we

did not cover?

So one was this. The other things that we did not cover and which we will be looking at next

weeks is how do we initialize w? As we saw

(Refer Slide Time: 06:54)

even for logistic regression or neural networks the minimum is not unique. Since it is not

unique how you initialize actually has the effect on how your neuron network trains.

Second thing is how do we determine the number of layers, number of neurons per layer. I

just showed something arbitrary here. Both these are also hyper parameters. Remember

(Refer Slide Time: 07:33)

in addition to alpha which is your learning rate, and lambda which is your regularization

parameter, number of neurons, number of layers per neurons all these are also treated as

hyper parameters.

And hyper parameter optimization is a big problem. It is an open problem in neural networks.

Doctor Ganapathy will be discussing a few details about this later.

Finally what nonlinearity do you use? I showed just one. I showed sigmoid.

(Refer Slide Time: 08:10)

But there are other possible nonlinearities that people use. One is tan h which is very

(Refer Slide Time: 08:19)

similar to the sigmoid and instead of going from 0 to 1; it goes from minus 1 to 1.

Another possibility is something called rectified linear unit. In short

(Refer Slide Time: 08:30)

it is called Re L U. It is completely flat at one end and then it is simply linear.

Now different choices can be made for different problems. As a very, very simple rule of

thumb, for problems with numbers we tend to use artificial neural networks and we tend to

use tan h instead of sigmoid.

For convolutional neural networks we tend to use R L U which you will see in the next week.

So these and other issues we will be seeing in the following week. And the final heads up for

next week we will be moving to what is called convolutional neural networks also called C N

Ns.

They are a special case of A N Ns, or artificial neural networks or deep neural networks that

we just saw for vision problems.

(Refer Slide Time: 09:31)

Is there any problem with A N Ns that we cannot use it for vision problems? No, not really.

The only issue is that, let us take my favorite example, that of a 60 cross 60 image. Let us say

you have 3600 features, this is just linear features and suppose you have 3600 in the next

(Refer Slide Time: 09:54)

layer also, so you can see that this is 3600 square weights already which is a huge number of

weights.

(Refer Slide Time: 10:02)

And vision problems deal with large images so you will have very large features which

means you have to deal with a huge number of weight. So instead of doing that the trick is to

use what is known as communication neural networks. We will start seeing that from next

week. Thank you.

