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Schematic of Multinomial logistic regression
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Welcome  back.  In  the  previous  videos  we  had  seen  how  to  use  logistic  regression  for

multiclass problems. We had done that using a Softmax function if you remember. We had

also looked at what the corresponding 
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loss function was, etc. 



In this video I want you to see a simple schematic which will also tell you how exactly a

matrix comes when you deal with weights with multiple  classes, when we have multiple

classes in multinomial logistic regression.

So let us consider a simple example. Let us say I have 3 input features. 
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And let us say I have 3 output features also, Ok, y 1 hat, y 2 hat, y 3 hat. So 
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let us say this is a 3 classification problem. You can think of multiple examples for this.



For example if I give height, weight and age, suppose you want to find out whether this

person  has  no  probability  of  heart  disease  or  low  probability  of  heart  disease,  medium

probability  of  heart  disease  or  high  probability  of  heart  disease,  this  is  not  quite  a

classification problem but just as an example I can give you this. 

We will look at several examples or at least a few examples in the examples week which will

be around week 9 or so. So you can think of any convenient example for yourself. And now

let us introduce our usual bias unit which is 1 or x naught 
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and now we want to find out what is y 1 hat, y 2 hat, y 3 hat. 

So the portion that we are doing right now is the forward model. So as usual y 1 hat 
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is equal to Softmax of the linear combinations of this, w 0 plus w 1 x 1 plus w 2 x 2 plus w 3

x 3, Ok. 
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That would be y 1 hat. Now suppose I have y 2 hat.

Now y 2 hat is also Softmax of some linear combination, w naught let us say plus w 1 x 1

plus w 2 x 2 plus w 3 x 3. Now suppose 



(Refer Slide Time: 03:03)

this w naught, w 1, w 2, w 3 were the same in both these cases, obviously you are going to

get the same y 1 hat as well as y 2 hat. Because otherwise the functions are identical.

So this is not a good idea. So you need different weights. So we are going to use different

weights here, Ok. 
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So we need some terminology in order to distinguish these two weights. So I will call it w

naught 1, w 1 1, w 2 1, w 3 1 where the 1 stands for the output and the 0, 1, 2, 3 actually

stand for the input. 

Similarly you can easily see that now this should be w naught 2, w 1 2, w 2 2 and w 3 2. 
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Finally if we come here, I need another set of weights. 
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So y hat 3 would be Softmax of w naught 3, w 1 3 x 1, w 2 3 x 2 plus w 3 3 x 3. 
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So how many weights do we have? 4 unique weights in each one of these, so you have 4 into

3, 
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12 weights in order to account for the bias term also. 

So how would we write this matrix wise? So we have x vector which was 3 cross 1, we have

y hat which is also 3 cross 1 and we have w which is now a weight matrix. 

You can see w has 2 indices. w i j 
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has i as the input feature, j is the output feature. You had also seen in the earlier video with

XOR that you could have more than 1 layer. In that case typically 
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we add an L here which denotes the level. So you could have w i j 1, w i j 2, w i j 3 etc, etc. 

So you will have multiple weights. So this is the large number of weights as you will see in

next the, in the next, the videos in the next week when we come to convolutional neural

networks, you have billions and billions of parameters in usual practical neural networks that

sit in today which is why they are extremely powerful, Ok.

Coming back to this, if we want to write y hat as w times x, 
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so just for this case I will make x as 4 cross 1 so that 
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the 4 includes our bias unit also.

So you can write y hat as W x. x will be 4 cross 1, y will be 3 cross 1. So if you want an

appropriate W, please imagine what W should be. This should be 
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3 cross 4.

In the general case, if y hat is k cross 1 where k is the number of classes 
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and x is n cross 1 where n is the number of features. 
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Then w should have the size k cross n, Ok.

Now there are some people who will denote this w as 
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W transpose so as to be consistent with the notation I have used here. 

So you might see this at multiple places sometimes, you will see w x, sometimes you will see

w transpose x. Sometimes you will also see w transpose x plus B where B is a vector, the

vector of biases. 

So just to 



(Refer Slide Time: 07:38)

clarify this notation for you, please notice, if we remove the bias separately this will become

b 1, this will become b 2 and this will become b 3. 
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b vector 
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is separated and w x is separated in such notations. 

So  we  will  be  using  this  kind  of  notation.  As  I  said  before  we  will  be  using  this

interchangeably especially when it comes to future videos and future weeks, thank you.


