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Welcome back. We will be doing a repeat of the linear regression example except with the
logistic regression case and a slightly different example. So what I have written here is a very
short code which is an OR gate. So notice the OR gate is now given as four different examples:
00, 01, 10, 11. And I have given the corresponding ground truths here, y here is simply the
ground truth. For 00 it is 0; 01, 1; 10, 1 and 11 also 1. And like we did in the linear regression I
have given a learning rate, I have given a reasonably high learning rate of w equal to 1, alpha
equal to 1. And epsilon, the stopping criteria, let us make it a little bit smaller, maybe let us make
it 10 power minus- 3, just to sort of see how the whole thing proceeds. This is obviously not

good enough in general. So we will see how it works.
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So the general logistic regression code you will notice this is there i

Logeichiodedm « Ofiglem = Coneraluedl ogatcHogrosson mix =+

Generalized Function for Logistic Regression
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n the week 5 material on the

NPTEL website. You can copy it from there; it is more or less identical to the linear regression

code.
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So it is remarkably identical, you will see this term is the same, this term is the same.
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The only place we start differing is here. Earlier in linear regression we had only this term, w 0

up to w x n which was simply w dot x. There is a small typo here, please ignore that. So we have

sigmoid of w dot x which is sitting here.
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regression is instead of having just z which was the output

sigmoid of z as the new hypothesis function.
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for linear regression, you have
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The other change is in calculating the loss function. The loss function is now the binary entropy

loss function.
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Otherwise the error terms et cetera remain exactly the same. In fact even the gradient terms

remain the same. You may remove, include or you may include or you may remove the 1 by m

term.
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I have chosen to include it just so that I could use the same code, this is just the (())(02:36)

solution. If you wish, you can remove the m.
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Otherwise the gradient term is calculated in exactly the same way and finally we calculate the

loss once again based on the sigmoid.
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So let us run this code for the OR gate and see what it gives. You will notice these four points.

These are our original data points and the classifying line actually moves from an incorrect
classification slowly up and technically speaking this is already correctly classified but we have

set a certain stopping criteria so it will move till that stopping criteria is met. Notice also that the



loss function j is continuously decreasing. So please notice this. You will notice that as the loss

function decreases you can hardly notice any change in the classifying line.

You will also see that the classifying line is not quite the one that we had given theoretically
which had gone through 0.5. As I mentioned in the previous video this actually depends on what
your initial conditions are. So if your initial conditions are different, you might get a slightly
different final classifying line. The whole point of this exercise, so this is obviously a very
simple exercise with the OR gate. You can try it with AND gate if you wish and you will get a
slightly different classifying line.

So if you try with different initial conditions, you will get different classifying lines. The
advantage of logistic regression is it will give you an answer. Of course, it will give you some
local minima, it might not, it might be good or it might be bad. With four data points it turns out
that it can be reasonably good with this. Now if I wanted to do the AND gate example, all I
would need to do is change this. If I change this to 0, this to 0 and this to 1, play with this which
I would recommend for you, please change all your data points and check what kind of gates it
classified. In fact I would even recommend that you try and do the XOR gate which is simply

this one change to 0 and see what it does.

You will see that in the case of the XOR gate that j actually saturates very early, it does not keep
on decreasing and it gives an incorrect classification because as we had discussed in the XOR
video, XOR is not linearly classifiable. So it is not linearly separable data. OR gate happens to be
linearly separable. So this is a simple code. I would encourage you to play with it, look through
the code and kind of compare this with the linear regression code and see what you can notice

overall. Thank you.



