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Hello and welcome back, in this video will  look at  some alternatives to gradient descent

algorithms. Just to refresh your memory, we have looked at gradient descent techniques for

optimisation.  So there  are  basically  3 different  versions,  one is  called  the  batch  gradient

descent,  where the parameter update is made based on the entire training dataset.  So you

would calculate an average gradient for based on the individual grades that you calculate for

your training data points.

The other extreme is the stochastic gradient descent where you would update the parameter

for every individual  training  data points.  Your online learning is  possible  because of can

update your parameter as soon as a new data point arrives. But this method causes some large

oscillations in your objective functions, as well as your parameter updates. To get the best of

both worlds, what is typically done is minimise the gradient descent, which is a combination

of the above, that you take a subset of, take subsets of your training data and then calculate

the average gradient and use that to obtain the parameters.

So, for reference we have given the gradient descent update equation here, so the current

parameter estimate is the previous parameter estimate plus the update, so this is the update.

Update is your gradient,  with respect to the parameters,  multiplied by the alpha which is



called the learning rate. So, what will do now is to go through some of the variants of this

gradient descent algorithm. So, primarily these have been, these have evolved primarily by

looking at how we can make networks converge faster, which means deep learning networks

converge faster to the optimal solution.

Almost all of the algorithms are, you can use them like black boxes in most of the packages

that they introduced last time. So in that sense you do not have to really have to code them

but you just have to understand how they work and try out different things for your particular

implementation of a deep learning technique or machine learning techniques. So for instance

tensor flow or pie torch will have many of their algorithms, we will see, we will have them

already coded, and will just have to use that option.
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So these are some of the methods that we will see, momentum-based, which will, then the

Nesterov accelerated  gradient,  Adagrad,  AdaDelta,  also  RMS prop,  very  similar  initially,

okay. So we will just start off with the momentum update. So what this variant does is to add

a fraction of the previous update to the current update, okay. So which means that it will take

a  larger  step in  the relevant  direction,  so that  we preventing  oscillations  and converging

faster. So we saw that, this Delta is the update and it is proportional to, this is update here,

this is the update from the previous step.

When you take the fraction of this update, so gamma is typically 0.9 around that value, then

you added to the, then you add it to your current update right here. So that way you take our

bigger  step towards the relevant  direction,  of course and this  is  how you would actually

update your parameters. So your current update right here has the usual update equations, this

is Alpha times the gradient with respect to the current value of the parameters, Wn minus1.

And your previous update, the fraction of your previous update is added to it. So this is the

moment update equation.

The  Nesterov  accelerated  gradient  goes  a  little  bit  further,  so  what  it  does  is  to,  if  you

compute the update parameter value, right, so you calculate the update and then you add it to

the previous iteration value. And you treat that like a lookahead and you evaluate the gradient

at the look at points, okay. So this is the same update equation, so this is the Delta W1 is the

update to your parameter. So you can have, just like the moment about it, you have a piece of

this previous update, plus, so instead of, so in the previous step, version, momentum update

version, you calculated J with respect to Wn minus1, here you calculate J with respect to the

lookahead, this is a lookahead parameter, okay.
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So and then you perform the usual update right here.  So,  this  we it  helps you get better

estimates of your parameter updates. So the next version is basically where you try to have

different learning rate for different parameters. So, if you notice, in all the momentum as well

as the Nesterov accelerated gradient method, you had the same learning rate alpha for all the

parameter. It is just that you either took the previous version of the, previous updates as well

as the lookahead to get a better estimate for the current update.

So, here what we do is we will have a different learning rate for different parameters. So this

is the equation,  so your current parameter is,  of course your previous parameter plus this

update,  I  will  clarify the indices.  So i  is  your parameter  index, right,  so you might  have

hundreds of millions of parameters. So you would consider each parameter at that time, so

the current parameter is the previous, from the previous iteration n minus1 plus this update

equation. 

The alpha is your general base learning rate and for each parameter you will have a specific,

so here again I missed out this index here, implicit Gni. So what is this term in the square root

and what is the Gni. So, Gni is your typical, that is your gradient, okay, it is your gradient,

Gni is the gradient at the current step, so n. And the square root term, this Gni is the sum of

squares of the gradient. So, this is G1 square plus G2 square plus G3 square plus G n square,

okay, for that particular, of course I've left  out the index i  in this,  but for that  particular

parameter.



So you take the gradient with respect to that specific parameter index i and you accumulate

the gradient, the squares of the gradient and take the square roots. And then to normalise your

base at learning rate alpha by that term. So, what it does is that if you have some parameter

which  is  getting  updated  frequently, some parameters  will  have  very  small  or  negligible

updates, so some parameters will have large and frequent updates. So, then we just make sure

it  is  just  it  is  normalised,  okay, the  updates  are  normalised  with  this  particular  running

average.

So the disadvantage is that as soon as the number of iterations increase, the denominator will

go really  large and of course your updates will  become very small,  okay. So G is just  a

shorthand for your usual gradient, this is gradient with respect to the current value of the

parameters.  The  capital  G  is  the  sum of  the  squares  of  the  gradient  from  the  previous

iterations up to the current iteration. So that is the Adagrad updates.
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And AdaDelta and RMS prop, the basic version is still the same, except that instead of taking

the running some of the gradients, you took a weighted sum or exponentially decaying sums,

so that it doesn't, other than not it doesn't blow. So it is, this is a similar formula, the update is

very similar to what we saw earlier, except that for this term, instead of the capital G, which

is just a running sum of the gradients, you will have a weighted running sum, okay.

So this is the gn square is the current gradient, gradient at the current step and of course it is

weighted by this factor 1 minus rho, rho is something between 0 and 1, plus the weighted

sum of the gradients from the till the previous. So, you can start from E of g square, at the 1st



step this should be 0, right. So, you would not complete the gradients but then you would

weight it every time with this rho. So this way you won't have the problem we had earlier

with Adagrad wherein we had the running sums of variants accumulating,  becoming very

large number and the parameter updates become very small.

Here you have a weighted sum, in this case you have a weight for the current square gradient

and then you have a weight for the previous, the sum of the gradient in the previous step. So

you  can  weight  it  like  that  and  that  way  you  will  have  a  very  decaying  sums,  and

exponentially decaying weighting average. So this method is again, 2 methods, AdaDelta and

RMS prop, they're very similar, okay, except that AdaDelta also have, so another factor in the

numerator, which is similar to this.

Instead of the gradient, so here you will have the expectations of the or the weighted average

of the updates, right. So this will, this is done to make sure that, of course the square root, I

missed out on the square root, this is done to make sure that the units match. So if you look at

this  particular  equation,  the  let  us  say  that  the  W's  have  a  particular  unit,  right,  some

dimensions, and in this case they do not match, right. Because the gradient dimension and

here are the square root of the gradient square, they will cancel out and alpha is there some

constant.

And so in 2 for the units to match, you will have this learning average, so it helps match that,

that is one application. RMS prop does not have this, so that is the difference, okay. So, there

are many other techniques also, very similar comedy something called Add M, which I have

not described here, there are lots of references online, you can look them up. So all of these

are quite very popular choices for optimising deep neural networks as well as general CNN

and things like that.

Many of them are available as blackbox implementations in many of the software platforms

like tense flow, pie torch, or even MATLAB, so you are welcome to go try them out when

you begin to coding your own deep neural networks. So, this includes our session on gradient

descent variants, okay thank you.


