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Hello and welcome back, with this video, we will about the bias variance trade-off, which is

an important component when you try to train different machine learning algorithms. Most of

the  examples  and  illustrations  are  taken  from  textbook  by  Christopher  Bishop,  Pattern

Recognition  in  Machine  Learning.  And  we  will  use  those  illustrations  and  material  to

understand bias variance trade-off. So let  us consider this  simple example,  where we are

shown this green curve, this is sinusoidal curve, from which we draw some data points at



some specific intervals, in this case right on top here, and we just add noise to it to obtain this

dataset which is given by the blue dot, blue circles.
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So the idea here is to, given that, given the data set consists of these blue circles, we want to

fit into a polynomial of this form given here. So, what we are going to do is to vary the

degree of the polynomial and see how the fix look like. So, how do we fit them, we use an

error term to perform the regression and in this case, it is just the least squared error, which is

given, which is illustrated in this figure. So t is the ground truth or the correct answer and

whatever your polynomial outputs, and it is given by y, so your error is basically what you

are going to use, this + this.

And we are going to sum it over all the data points that we get, so ti over here in this case it is

n square and i will go from 1 to N data points. So given with his error, we are going to fit the

given data set to a polynomial of varying degrees. And I will just what each of them look like.

So we have a zero degree polynomial, which is nothing but a constant term, so as you can see

there is a red line, which is actually the fit, the fitted curve, of course does not match the data

that we have used.
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Again we use a polynomial of degree 1, which is nothing but a linear fit and once you start to

go, get higher degree polynomial, in this case polynomial of degree 3 here and so on and so

forth, till we come to the polynomial of degree 9. In this case you see that the red curve,

which is the fit, that is the output y of xi W, fix goes through every one of these points. So it

goes through all the blue circles. However in between the blue circles you see that it is off,

what do you mean, what do I mean by this off, so we know that our new circles are drawn

from this green curve.

So ideally when you are done with the fit, you would expect the red curve to lie close to the

green curve, but in this case, in between samples is actually off. So even the with higher

degree polynomial is, we are able to fit every point exactly, so that our fitting error is very

small. We see that in points, other than the blue circles, it is actually quite far from the ground

truth, okay.



(Refer Slide Time: 3:32) 

 

So, if we actually plot the error, the error as we Define, in the previous slide I showed this as

your  ground truth  -  y, which is  the  polynomial  which  you are sitting  into  and W is  the

parameters and the number of terms is N. So as you fit the error 4 different values of n that is

really of the polynomial, see that as we hit the higher degree polynomials, the error on the

training data is very small,  which is what the blue circle indicates. However the test data

error, this starts to diverge.

So, this phenomenon is referred to as overshooting. Similarly has become back here, we see

that again, there is quite high when we are using a polynomial of degree zero, that is we are

just fitting it to a constant function. So in both the cases, we have a fairly large error, one in

this end of the spectrum, we can call this under fitting and at this end of the spectrum, we will



call it over fitting. So, just to summarise, we will see the similar plots, we will look together

just to get an idea of what is going on. So we have the selection of these blue points, which

we try to fit to different polynomials, polynomials of different degrees.
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And we do that by estimating the parameters, in this case the Ws are the parameters, in this

case it is a linear fit, so there is only one parameter W1, there is W0, which was not chosen

the figure. So what we are seeing here is basically, here we have this one model, which is a

polynomial of degree 1 and this is polynomial of degree 2, because it has 2 more terms x and

x square and this is a polynomial of degree 9, okay. So as you can see the polynomial of

degree 2 seems to fit properly in the sense that it goes through all the blue points and this is

when we visualize the green curve superimposed on it, it is actually close to the green curve

also.

While in this case, when you use higher degree polynomial, it actually does again fit through

the blue points correctly but in between the blue points, where there is more data, which is

not shown here, you see that the blue curve is actually off. But what is the fit here is basically

obtain with polynomial of degree 2, which among these 3 models that we see here. So this is

referred to as a model with appropriate capacity. So when you say capacity, you can say

basically the number of parameters in your model.
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So if you have a polynomial of degree 9, at least 9+ the W0 parameter, which is 10. So, given

this situation, we want to figure out what the bias various trade-offs does is to give us an idea

how to figure out the appropriate capacity for a given problem. Okay. So we again, once

again we look at this plot here, which shows the capacity on the x-axis and the error, that is

the training error, the training and testing error that you get for a given model. So just to

make, for ease of understanding you can think of capacity is a degree of the polynomial.

So we can see as you increase the capacity beyond a certain point, the training error has go

down,  right,  it  is  much  smaller.  However  the  green  curve  which  shows  through  the

generalisation error in that sense, generalisation error is when you use testing data which are

not part  of the training data. So, we saw some of those blue circles in the plots  are like

because the data used to train our models. Suppose we choose some other points which do

not coincide with the blue circles and then give it as input to our model, the output is actually

quite far from the ground truth, which leads to a very high error.

At this end of the spectrum, we once again see that both the training as the generalisation

error are quite high. The plot can be little bit misleading, it seems to overlap there but all you

have to understand is that the error is very high, so that is not also a desirable thing. So,

somewhere in between is the optimal capacity which in our, in the case of our example, it is

basically a polynomial of degree 2 or 3, which seems to give the best fit, then it goes through

all the low points are very close to them. It is also close to the green curve, which is our

ground truth, okay.



So by altering the capacity we can decide whether, we can make the model under fit or over

fit. Under fitting is when you have very large error in terms of accuracy of the model. It is far

away from the ground truth, the research that you get. And hear this as overshooting, wherein

it actually fits the trade data perfectly but it does not generalise very well, so new data gives

the very large error, okay. So just to summarise this, this is the usual way in which this bias

and variance are visualised.
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So in this case look at this model here, this is called the high, this is equivalent of the high

bias model, that is, we want to be close to, this is the dartboard example, so we will like all

the darts to hit the bull's-eye, which is the centre. What all the darts have actually hit quite far

away from the bull's-eye, this is that they are not accurate. So it is high buyers, but they are

all very close together, okay, so that is low variance, okay. Again if we look at 4 in the case of

high bias, and high variance, once again, most of the darts has fallen far away from the bull's-

eye, but again they are not very close together, they are highly dispersed, so that is high bias

and high variance.
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The ideal model which is what we would like is the low bias and low variance, that is most of

them are close to the bull's-eye in and around it with very small dispersion. And the other

case is when we have the low bias and the high various model, wherein they are simply close

but then again this was far away from each other, okay. So, this bias various trade-offs is

basically, it relates to model complexity or crudely we can think of them as our number of

parameters and the basis functions.

When we see the basis functions, so for instance, in the case of the example we saw some

other basis functions are nothing but the x, x square, so on so forth through x to the power m

by m is, where m indicates the model complexity. We have a lot more parameters, so general

it is a complex model. The error that we get in training, so you can think of this as the fitting

error or the training error, in this case it can be decomposed into 2 components, one is the

bias squared error and the variance.

And  this  depends  on  the  model  complexity.  This,  the  component  of  the  error,  the  bias

contributes to other contribution of the bias to the error and the contribution of the variance of

their depends on the model complexity. So we what actually go through the derivation for

that, so you can actually start with a squared error and decompose it into 2 sums, won the bias

and variance. But we will just look at the terms themselves to understand what they mean by

that.
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So if  we consider  dataset,  right  and we have  seen  that  y  is  our  model  and Ws are  the

parameters of our model, xi is the input and you can think of capital Y as a ground truth or

the correct answer that would like to get. So Y hat is the statistical estimate, we will go, we

will see later that why we call this as statistical estimate, for now we can think of this as the

answer that is a petition made by your model, or the output audio model, okay. So the bias is

the expectation value of the difference between the model prediction and the correct value,

okay.

So we all look at, we all know what expectation value is, but here I am only talking about the

single values, I will clarify later what we mean by expectation. So you can define bias to be

this  term,  so which is  nothing but the,  this  is  a  ground truth,  the difference between the



ground truth, which is the correct value that your model should predict and the answer that

your model actually  gives,  the difference between them squared at  the average of that  is

actually what we call the bias, the bias term.

The variance is the variance of your prediction itself. So you will have a range of predictions

and  the  variance  among  them is  what  we call  the  various,  obviously  the  name impacts

variance. So the error that we get, the fitting error that we consider can be written as the sum

of these 2 terms. There is also one more term called noise, this is noise which is inherent in

your data, because all your answers are not, even your ground truth has some errors in it,

there is always some noise, so which we are not taking into account in this model, okay.
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How do we, so the error that you get is the sum of these 2, so if you look at the plot again,

when we consider model complicity along the x-axis and the actual fitting error along the y-

axis, we see that as the model complexity increases, the bias error, the bias component of the

error comes down, which we saw earlier, right. Because when you look at the polynomial of

degree 9, it was able to, the curve that we finally got was able to go through all the blue

circles, that is the data points that we used, okay.

Similarly as you look at the model complicity as you have a very simple model, in the case

we have the polynomial of degree zero, then the error becomes very high, the contribution is

very  high,  okay.  And  if  you  look  at  the  various  component  of  it,  as  you  increase  the

complicity  of  the  model,  you  have  higher  various  and  as  you  decrease,  the  variance

decreases. Okay, so these 2 add up to give you the total error, so there is a point at which you

have an optimum error, right capacity model, it strikes the right compromise between the

buyers and the variance, okay.

So, typically, to understand it  from the point  of view of curve fitting,  we have a simple

model, which in this case, you know we have, let us say these red are the data points that we

have drawn from some complex function and we are trying to fit it using a simple model, in

this case the straight-line fit.  A simple model will  give you, it has insufficient number of

parameters and features, but it will have higher bias, okay. On the other hand if you use a

slightly complex model to fit the same vector, which is what we have seen in the right.

Then it  will  have a lot  more features than you actually  need. But it  will  have very high

variance, you can say this will have very low bias, in the sense it will actually be able to fit

through all the data points, but you are variance will be very large. On the other hand, simple

model will have lower variance, okay. So this is how you understand it from the point of view

of curve fitting. 
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Now, how do we crudely speaking how do we measure this bias variance? We will not do it

this  way but just  for this,  just to understand what these terms mean, we will  have to go

through this process, okay. So here some of these terms may not be familiar to you but I will

make you make the understanding easier. We will consider B bootstrap samples of variance

of dataset X. So, think of it as the 2 have access to, let us say 10 different or 20 different

datasets drawn from the same data distribution. In this if we go back to our example, so we

had  this  green  which  was  a  sinusoidal  curve,  you sample  10  points  at  a  time  from the

sinusoidal curve and then you do that let us say 10 or 20 times, okay.

So you will have about 10-20 datasets, each dataset having 10 points, that is what we call

bootstrapping.  So  we  have  B  bootstrap  variants,  from  where,  from  our  data,  okay,

corresponding X and Y, okay. So for each of the bootstrap set, we call T, that is the data that

we  have  extracted  as  the  training  set,  okay.  And  for  each  of  them  we  will  have  a

corresponding test set also, okay. So the way to think about it is you have X and Y, you will

have one set of xi, so this is one dataset that you draw from our cup, let us say the green

cover that we saw, the sinusoidal curve.

And  then  you  will  make,  you  will  draw  different  set  of  X  and  Y, again  xi  and  the

corresponding yi. So you will have in this case B datasets, so you do this, let us a small b

times, right or capital B times, right. B can be 10, 20, 100, whatever you like. For each one of

these datasets, we will fit to a model, which is, which can be, in our case for example can be a

polynomial  of  degree  n,  we  choose  m,  but  of  course  you  fit  all  of  them  to  the  same



polynomial, okay. And then you test it on its separate held out dataset, each of them will have

a different test data.

Now that we have B different datasets, for every model that we use, let us say we are using a

model  of  degree  2,  there  is  a  polynomial  of  degree  2.  For  every  X we will  have  many

predictions, red, Y1, Y2, up to the number of data points we have, right. So, what we wanted

to cover for each X, so remember that after we fit this model, we can evaluate that model for

any X. So, if there are B models, so we will fit B models to the B bootstrap variance or the B

samples that we have, B datasets that we have.

We will have, we can evaluate for single X, we can have B Ys, okay. So for one X, since you

have B models, so for one X, we can have outputs up to B, right, B outputs. So the variance is

nothing but the variance of those outputs. So that is the variance of our model, variance of

those outputs. The bias is nothing but the average, for every X you can calculate an average

of the Ys that we get and subtract it from the ground truth and take the square, that is a bias

square.

So this is how you can actually calculate the bias and variance for the model you choose. Just

to summarise, we have B datasets, all coming from the same distribution and with one of

those datasets, you will fit the same model. So, in this case you decide to fit a model with a

polynomial degree 2, okay. So corresponding you will get the model parameters. Now that

you have a model parameters for each one of these B models, you will plug-in individual Xs

so for each excuse will get B capital B Ys.

The variance of those Y is the variance of your model, the mean of those Y - the ground truth

squared is the bias, okay. Of course you realise that doing this on a real dataset, especially

when you have a large model is not going to be feasible, especially since we will not be

having access to some many watches offer dataset. So how do we actually do it in a real

scenario? 
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One of the prescribed methods is to split your existing data into a training, which can be 60 to

70 percent, there is something called a validation or development set, this is what you will

monitor, in order to determine whether you are model is a high bias or high variance. And

you have a testing set in the end, just 2, once you figure out the correct model using the

validation dataset, you will test it to see whether it is as good as you think it is. Okay. So, here

is the problem, right, so then you have model capacity and the error, okay.

So you will plot both, the training error as well as the validation data error for different model

complexities. So if the validation data and the training magnitude and the training data error,

are both high, we saw that plot a few slides ago, then it means that it is a high bias problem,

that your model has a high bias, right. Both your training error and, this is basically in this



region, right.  On the other hand, if the training error is  low, if  the training data has low

variance, right, while you are validation has higher, and this is, sorry, let me repeat that, so if

your training error is very low, but you are validation error is very high, then you have a high

variance problem.

So this is what is in this case. So your training error became very low but your validation

error is very high, okay. So, just to recap, the idea is to split your training data into 3, one is

the  training  data,  which  we  will  use  to  figure  out  the  parameters  of  your  model.  And

validation data is that, is the one that you will use to check whether your model, whether the

model has high bias or higher variant. If the model has very high training and validation data

error, then you have high bias, then the model has high bias. If your training error is very low,

while your validation error is very high,  then it  means that  you have very high variance

model, which means you have very complex model, it might not be necessary for the data

that you have at your disposal.
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Okay, so then, what are summarise here, so then how do we handle this problem. So, we have

very complex model that can lead to over fitting, okay. Then, but then you would like to play

it safe if you actually want to retain the complex model because it seems to generalise very

well. So if you think that it generalises very well, then how do you address the high variance

problem,  how do you make sure that  your  fits  are  good? So this  is  accomplished using

regularisation, okay. So what is regularisation?

Which is in this case, we have the least square error, here the symbols are slightly different,

so we have used P instead of capital M, so it does not matter. Wis are your parameters, Xis

are you input, Y is the ground truth, okay. So what we do is, we penalise large coefficients by

adding a term to your fitting error. In this case it is lambda over 2 double squared, okay. And

W is the 2 norm, you must have seen this 2 norm or the L2 norm. Add the L2 norm to your

fitting  error and then you do the fit  as before.  So what  it  does is  that  it  is  a very large

coefficients, this will penalise it.
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So,  why do we have to  penalise  very large coefficients?  We will  show you why that  is

required and the will look after we have examined what the curves look like after you do the

regularisation. So, if we choose, if we have a same, we go back to the polynomial example

where we are now using M equal to 9. And we saw earlier that there was a huge error, the

fitted curve which is a red curve was oscillating wildly. But now it is a little bit more boot,

because we added the regularisation term, the log lambda is how you measure the strength of

the regularisation term.

So, because typically lambda is a very small number between zero and one, so it can be like

0.01 or something, so expressing it in log lambda is more meaningful. So, when we use a

small hyper parameter lambda, so lambda is a hyper parameter as we call it. So we have L2

regularisation, then even with polynomial of degree 9, we get a reasonably good fit. And

when we use log lambda zero, this is, this is very strong regularisation, so then it actually

becomes a very high bias model. This is very similar to what we saw when we had just a

polynomial of degree zero, okay.

So by adjusting the strength of this lambda, we can control the bias variance trade-off, that is

the idea behind having a regularisation. So, we have a very, this is a kind of, this lambda i is a

very small number, so then we have a very smooth curve fitting. But when we make our

regularisation very small, where lambda is close to 1, then you have a very, this case becomes

a very high bias model, right. 
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So, then once we have the, once we have the regularisation in place,  in this case the L2

regularisation, then we can look at the set of the regularisation strength of the regularisation

versus the error, LRM versus the error, the fitting error that we measure, the root mean square

error. And we see that beyond a point, it is a very good region here to operate, right. So we

are okay here, by using a very highly complex model, polynomial of degree 9, we are going

to,  we  are  getting  the  training  and  test  data  to  be  close  to  each  other  by  choosing  an

appropriate value for lambda, okay.

So, what do I mean by penalising the high bit. So, if we do not have regularisation in place

and we fit using the M degree polynomial, you see that some of the weights that we estimate,

the parameters of the model are very high, we see that. Of course this when you examine this,



you see that this is meaningless, it should not be this way, right. So once we start, once we

adding the regularisation, so this is without regularisation, which is log lambda is - infinity,

this is some medium level of regular occasion, when we got very good results with a very

nice fit.

And this is a very strong regularisation you see that most of them are going to a very small

number, so we have only included 2 or 3 significant figures after the decimal place, so it does

not show up. So, by adjusting lambda, so we can actually do the bias variants trade off, okay.

So this we saw, this is for the L2 regularisation wherein we add the L2 norm of the parameter

to your fitting error cross function.
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We can also do the L1 norm, which is nothing but the absolute value of your parameters. In

fact some, many, you if you go to the deep learning, many of the network that you train will

have both the combination of yours L1 and L2 norms, okay. So, typically we have a very

complex  models,  you would  end up with  a  very  high  variance  model,  in  the  sense,  the

generalisation error is very high. But will not predict out of, the data that comes, which is not

part of the training data, if you give it the data, it would predict properly.

So in order to control that high various problems, you add in regularisation terms which will

penalise  very high values  of  your  parameter  estimate  and smoothen your  model  to  have

reasonable variance and reasonable bias, thank you. 


