
Machine Learning for Engineering and Science Applications
Professor Dr. Balaji Srinivasan

Department of Mechanical Engineering
Indian Institute of Technology, Madras

Generalized Functions for Linear Regression

(Refer Slide Time: 00:15)

Welcome back in the last video I has shown you how to write a generalized linear regression

routine we had decided we have discussed how to take x as a vector with a scalar y as output and

how to map one to the other using a linear model. So in this short video I would like to show you

how to code this up I am going to just briefly go over it we will leave the responsibility of

reading the code and understanding it further most part this is a simple a MATLAB routine

which will be available in you with you for the in the NPTEL website in the week 4 portions. So

what I have written here is a function.

So this function which we called generalized linear regression a simpler version of this without

all the comments is available in lin model it is exactly the same as this code both this codes are

available to you on your NPTEL website. Once again I am repeating this but we are welcome to

write some such thing for yourself in any other language that you are comfortable with. So this is

just for your understanding so what we have here is a regression model which takes in x the input

vector y, the corresponding output vector remember you have a whole bunch of examples which

is why I have written input matrix here because x for each example is actually a vector ok.

As we discussed in the previous video x could itself have x1, x2, x3 etc depending on the number

of features or attributes that you have. Alpha is the learning rate that you think will be good for

this problem and epsilon is the stopping criteria for the problem.

(Refer Slide Time: 02:05)

The output which this function gives out is the whole weight vector and notice as we had

discussed in the last video I am actually including the bios term W0 which some people call B

and including that in the weight vector therefore the size of the weight vector has to be this n

features plus the one bios ok. So the first thing that we do since we have not given it explicitly

this is your choice MATLAB has an easy way for you to determine the size of the incoming data,

this might or might not be available in other programing languages. So we have used this feature

easily so we find out the number of examples m and the number of features n simply by looking

at the size of x.

(Refer Slide Time: 02:50)

We also make an initial guess notice its n plus 1 is the size of vector because they include W0

also and then this is all of it is the same as before.

(Refer Slide Time: 02:56)

We actually iterate for W using gradient descent notice now that the hypothesis function is

simply W not plus W1 x the W knot plus W1 x1 plus W2 x2 uptil Wn xn which can be written as

W transpose x in case W is the modified W including W knot also and assuming that x knot is

equal to 1 ok. So we find out the hypothesis function we will notice a 1 sitting here this 1 is

sitting because I am writing x k not explicitly x is simply x1 through x n ok.

There are many ways of writing it I have left that as an exercise to you I have written a slightly

inefficient version but you can write more efficient versions ok. Once again like before you have

several choices for stopping criteria either you can choose the difference between the current

value of the loss function and the previous value of the loss function or you can find out how

much do the current how much does the current w differ from the previous w, ok.

(Refer Slide Time: 04:02)

In either case we simply call this stopping criterion as error and the moment the till it is greater

than epsilon keep on running.

(Refer Slide Time: 04:12)

Our main task ofcourse is to find out the gradients of j with respect to the weight vector w, I have

written the formulation here we had also derived it twice in the previous videos and you notice

prediction error multiplied by the corresponding feature component ok.

So if you look at del j, del w r it is going to be 1 by m times summation of the prediction error y

ha minus y multiplied by x r ok which is what I have written here, D j is what denotes del j del w

notice that D j has n plus components starting from the first component which will correspond to

w0 and will go uptil n plus 1 which will correspond to m.

(Refer Slide Time: 04:58)

So we take that we calculate the change I w, w is ofcourse w minus alpha times grad j ok. Finally

we calculate what the hypothesis is and this lets just calculate the j because y minus y hat square

averaged over all the other all the examples actually gives you j.

(Refer Slide Time: 05:20)

I have also included some plots just for similarity from before and we can try running it in order

to see how this performs. Now the important thing here is this is really general you can take any

number of examples any number of m and also you can choose any number of features ok so the

code is supposed to work and as we discussed in the previous video this lets us use not only

linear regression but it also lets us use polynomial regression because all we need to do is to

change w1 to x power 1 w2 to x power 2 x square and w n multiplying x power n ok. So if x the

incoming vector is basically x1, x2, x3, x n you can simply use that as the features you as the

polynomials and that will work ok.

(Refer Slide Time: 06:11)

So let us now try using our original data and see if we can now use our generalized code,

generalized linear regression code in order to make linear quadratic and cubic predictions. You

will see one small surprise here which will lead us to a small modification for what we want to

do for linear regression ok. So as before t was the initial data and the alpha is y ok notice that

alpha is multiplied by 10 power minus 6 as the expansion coefficient ok. So initially we define x

as t and y as alpha we choose a learning rate of 1 we choose an epsilon of 10 power minus 5 and

we will try learning our generalized linear regression code and see what happens. So when we

run please notice what is happening here you can see this numbers growing larger and larger in

fact j is rapidly increasing and j has to now reach 10 power 247 and y has also reached 10 power

128 for the prediction because we are not getting conversions we are actually getting diversions.

Now you might decide that this is because of a large alpha and try and reduce it. So let us say we

make alpha 0.1 instead of 1 and we try running it again and you will see that the situation has not

really improved it is still blowing up ok you have still got high values of j and you have got high

values of y. Now why does it happen? This happens due to a certain reason that is because the t

that you have here or the x that you have here if I write x let us try writing x here please notice x

is going from 80 to minus 340 ofcourse our y’s are 10 power minus 5 times all this values. So

your coefficients that need to come so that this x can be mapped with this y are extremely small

ok.

All this problems are essentially what are called normalization problems ok. For example let us

say you are matching the area of a house to its price an example that I have used before ok. So in

what units will you give the area? You could make the area in you know square foot which is

normal thing or you can make it in square meters you could make it in square kilometers in

which case your input vector will look really small or you could make it square centimeters etc.

Similarly suppose you are mapping the height of a person to his or her weight and that is the

regression problem that we wish to do in what you unit should you represent height? Should we

represent it in micrometer, should we have represented in meter which seems reasonable to us or

should be represent it in foot etc if you represent it in kilometers your numbers your input vector

will look really small and your weights will change appropriately. So we tend to try and use units

where you normalize x so that typically it varies to the order of 1 ok. So that turns out to be the

simplest thing to do you can make it so that it varies from lest say minus 5 to 5 or from 0 to 1

which is probably the easiest.

So the choice that we will do right now and this step is called normalization or re-scaling is to

rescale the data so that I have a new x I will also rescale y you know remember we have all this

numbers and I was multiplying by 10 power minus 6 which is arbitrarily as far as the code is

concerned I will comment this out so that y is now simply this numbers x is rescaled the way this

rescaling was done is x goes to x minus minimum of x by maximum minus minimum okay when

you do this this x n will actually get rescaled so that it is only between 0 and 1. So now that we

have done the rescaling let us try and see what x looks like.

So we have new x here if I write it out you will notice that it goes between 0 and 1 ok so you can

see that the maximum is 1 and the minimum is 0 this corresponds to the following x which was

80 to minus 340 all we have done is x has been rescaled the minimum has been subtracted out

and has been rescaled by the range. Ok so now x goes from 0 to 1 or 1 to 0 ok and now we can

try and see what happens when we continue our code ok.

(Refer Slide Time: 11:13)

For the same alpha you will now see that the linear fir starts working ok. So there is a drastic

difference when we didn’t rescale it was going completely wrong because the values of x were

high and the corresponding value of y hat was also high.

So you can see that certain things can actually make a great difference as far as training goes,

training means finding out the coefficients. So you will see that the fit is now working and the

only change we made was we rescaled the data ok we rescale the data instead of having original

x now you have x between 0 and 1 ok. So this trick is an important trick infact it has been

generalized to something really big called batch norm which we will see later on in the course

ok. So I will stop this stimulation. Now another thing you can do is with the same code we can

now try and get quadratic. So notice this we keep the same x n we keep the same y n all I change

is now I change my feature vectors and I say that the input is not only x but it is x as well as x

square.

Now our code is written such that the moment I give it one extra x or an extra feature ok it will

start reading more features and it will fit a bigger model ok so this is the trick that we use the

moment I gave x and x square obviously the code doesn’t know you have given x square as the

second variable all it knows is x1 and x2 so the moment it sees x1 and x2 it will say that my

model is now no longer w knot plus w1 x1 but it is w knot plus w1x1 plus w2x2 which says at

purposes because x2 is now x square ok. So let us see that now just to show you what happens I

will run this again so if you come here you will now see that the number of features with the

code is recognizing this two and you will also notice that w is now a 3 by 1 vector and this is the

initial guess it has given an initial (get of) guess of 0.8 for w knot 0.14 for w1 and 0.42 for w2

and this (())(13:32) are purposes ok.

So will continue here and you will see that now it is trying to fit it is trying to fit a curved line a

quadratic line to this data I will let you run this on your own and it is not very hard t change this

into a cubic fit because all you need to do is to add this extra term ok and we can now start from

scratch and run this and it will try and fit a cubic plot you can see the this is slightly more curved

and I would encourage you to play around with this code or write one on your own and see

what’s sort of fits you can get for this kind of data ok you can ofcourse try it for any data. So

what we have seen in this video is that rescaling helps you and that you can actually fit with the

same code you can fit linear, a quadratic or a polynomial depending on what sort of input vector

you give it. I will write down what is needed to do this once more.

(Refer Slide Time: 14:46)

So if we look at normalization or rescaling what we did was x became x minus x min by x max

minus x min and lets call this x tilda for our purposes and this is our new input vector what this

does ofcourse is x tilda now will vary between 0 and 1 there are other alternatives for rescaling

this is to say x tilda is equal to x minus mu by sigma where mu is the mean of the data and sigma

is the standard deviation of data ok. Typically this is called normalization and this doesn’t ensure

that you are going to lie between 0 and 1, if you usually go between negative 3 to plus 3 or

somewhere in that range, this is simple rescaling ok.

So you can use one or the other normalization is used in with great effect in something called

batch norm. Batch norm is very-very effectively used in several deep neural networks and you

will see this a little bit later.

