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Linear Regression Least Square Gradient Descent

In this video we will be looking at some details of the linear regression we had seen a simple plot

obtained through MATLAB for a linear fit, a quadratic fit and a cubic fit the last video we will

look at some details of how to do this please pay attention to the process that is been shown here

because this is essentially the process that we will be repeating for almost all of deep learning

specially for the deep learning module as I said the paradigm is set by what we do for a simple

linear fit and we will just continuing that for quadratic cubic and then neural network etcetera,

and even for classification problems.
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So  here  is  the  example  the  we  saw  last  time,  last  time  we  looked  at  temperature  versus

coefficient of thermal expansion and we had all this data on the X axis let us call this X and we

have all this data on the Y axis let us call this Y so this Y as I said earlier is call the ground truth

this is basically the experimental truth or reality that is available to us, 

What we would like to know is what happens in between that is the classic regression problem

we would like a fit for this data and we saw three different kinds of fit last time one of the fit is



was a linear fit you see that actually this line which we can call Y hat which is a function of X

called the hypothesis function of X in factory had hypothesis this two W0 plus W1 X.

So this is Y hat versus this is Y for the same X you have the real prediction and you also have the

hypothesized prediction so we saw that there is a difference between the two but non the less

overall trend is captured by the hypothesis so that us one of the thing that we saw last time we

also saw that if you put a quadratic fit in this case let say this is Y hat so quadratic shown in red

here that a little bit better than linear in fact it is reasonably better then linear and cubic which is

merely better then quadratic almost in distinguishable so we had all this different fit is that we

had for the same set of data why do all this fit differ because our H of X or module for what Y is

like which we call Y hat is actually different for each of this cases so we had linear quadratic

cubic so for example for quadratic we has W1X plus W2X square so on and so forth.

So what we will see in the next video is how do you actually come up with the coefficients so I

just use some in build MATLAB function now we are going to do it from scratch in the coming

videos.
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So let us look at this general problem just like the previous problem you have some X and you 

have some Y you have some scalar X and you have some scalar Y and each of this data points is 

we can lobular task data point 1 data point 2 so and so forth, and let us say there are M such data 

points so we have single input like the temperature and single out put like the thermal coefficient 



so let say we take this data pack Xi Yi and we called it the ith example, why example because 

later on we will see for images I will say this is an example of cat, this is an example of dog, so 

each images also call an example this is simply machine learning terminology you can called it 

data point.

So ith example simply means ith data point so in this figure let say I think there are approximately 

51 more points so you could start with X1Y1 and go up till something like X51 Y51, something 

that is see have all this points and what we you would to see is which hypothesis function fit is 

this the best, remember this terminology will be using a lot of letters and within our course M 

simply means the number of data points or number of example that you have please remember 

this.
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Now let us look at how do you do the fit here the input output is actually the given data and Y hat

is our model above and beyond that the data is given so you have X1 and Y1 but your guessing

what Y hat should be for the given X remember like the example we gave X was the temperature

Y was the thermal expansion coefficient this is the actual and you will guess something else, we

are going to introduce our first very first for this course model hypothesis this is a simple very

very trivial linear model but it is enormously powerful as you will shortly see in the next couple

of videos.



Now there is only one question we have already fix the form of the function and as i said in the

previous  video we still  have the parameters,  the parameters  are unknown what W0 and W1

should I fit now obviously for different choices of W0W1 even in each case even though in each

case your hypothesis will look like a line it is going to look like a different line depending on

what W0W1 you fixed.

So suppose somebody randomly give’s some value of W0W1 here is the original data here is

your  hypothesis  this  is  the  data  this  is  your  hypothesis  or  the  model  based  on  the  model

parameter some model parameter (())(6:03) now it doesn’t look like a very good fit intuitively it

doesn’t look like a good fit so somebody else another person gives us a slightly different model

and this looks slightly better than this again we have an intuitive notion of what is better we will

formalize this and this very slight so this looks better than this because all that has change here is

W0 and W1 remember all three are still lines.

Now this one looks really good this one looks much better than this also much better than this so

the question is, is there any way in which we can formalize or quantify remember this word in

machine learning we are always looking at quantitative things we are looking at number so the

machine only recognized numbers so is there any way in which we can quantify why this is

better than this or this and the idea goes back to an old idea which we have which is a cost

function.

So what is a cost function for this it is simply one simple number that will tell you how good the

fit is, so how is it going to say that now for each point, let say I take this X there also Y there also

a Y hat so there is a different between the two what do I do, I take difference between the two

square them and then add it, so let us say this was Y1 and this was Y hat 1 this is Y10 and this is

Y hat 10 so for the same X you find out the Y and the corresponding Y hat square it add all of

them how many example do you have, you have Y equal to one two M.

So you have 51 such examples these some of all this squares this is basically some of the square

of the errors and you say which ever line or whichever choice of W or W1 minimizes this total

error I am happy with that notice that no line is going to fit all of this perfectly you cannot drive

this Z0 because no line will fit all points but overall, you know overall little sort of kind of split

the data so that you do not go too far away from the line.



So this is how we achieve our optimal W, so we say that the optimal W, so you can now notice it

has now become optimization problem and optimal W1 is the one which minimizes this net cost

function now couple of things i have put by M here this is arbitrary even if you remove this 1 by

2M the minimum will be the same but this M is often used because you would like mean of

squared error for several reason 1 is of course to avoids some kind of over flow errors you some

time just take a mean another thing is this two is also arbitrary, but it is put there just show that

when it differentiate this function the two and this two will cancelled out, this fit is called the

least  squares  fit  so  the  W’s that  we  get  at  end  of  the  process  will  be  called  least  square

coefficients and this cost function is sometime it is called the least mean square cost function or

the mean square cost function some time it is called LMS.

(Refer Slide Time: 09:20)

Now that we have reduced our fitting problem to an optimization problem can we use gradient

descent, which we discussed in the previous week so g radient descent we used as a general one

box algorithm in order to find out minima and it turns out we can use gradient descent, how do

we do it very simple idea again to start with an X some data point for a temperature that is given

for an example guess some W, this W is remember true for all X run it through the hypothesis

our Y hat was linear function W0 plus W1X the ground truth is already available, we just got a

hypothesis because we guest the W.



Now there is going to be gap between Y and Y hat square it sum it that is going to give you the

net cost of the coefficients that you have chosen remember this net cost is because we have

chosen some W0 and W1 then find out gradient and improve your W by using gradient descent,

so let see this again you have M data points let say 51 just is an example now for each of this

data points you can get a corresponding Y hat provided I give you some guess for W0 and W1.

You have the corresponding output then you calculate the net cost function which is Y minus

remember what this is, this is Y hat I, so YI minus Y hat I square will give you the net cost

function and then you improve W by using gradient descent when do we stop you keep on doing

this you has some stopping criteria, I gave you three different types of stopping criteria and we

will see at least two of them and then an example shortly so if you used your stopping criteria it

will stop the final results that you obtain for your W are actually your regression coefficient, so

you can carry out this whole process but theoretically you have only one small catch how do you

calculate this gradient of J with respect to W, So let us see that.

(Refer Slide Time: 11:48)

So our J as you saw on the last slide is submission of Y minus Y hat square, Y hat was W0 plus

W1X so you get Y minus W not  minus W1X square,  and we want gradient  of W we want

gradient of J with respect W, notice that W is a vector so W is basically in our case W not W1, I

will avoid that transposes similarly gradient of J with respect to W not which is nothing but del J

del W not and del J del Y, I am just writing out this both the components of this vector equation



W not is W not minus alpha del J del W not W1 is W1 minus alpha del J del W1, now we want

this two expressions, I will show you that they can be written in a compact form like this please

do not  pay too much attention  to  this  before  the derivation  that  the derivation  is  extremely

straight forward actually, so let us take the simple case, let us take the case that M is equal to

two.

I will just do the derivation for that and you can see that it easily extends to any number of N, so

let us give a proof of this statement so suppose I want del J del W not for the case M is equal to

2, I will keep the 1 by 2M here now what term I will have, I will have Y1 minus W not W1X1

square plus Y2 minus W not minus W1 X2 square this are the only two term that exist and now I

have to take del by del W not of this, since it is a partial with respect to W not only this terms are

actually depended on W not, so how do we do this 1 by 2M take this term this is the same as two

times Y1 minus W not minus W1X1 multiplied by derivative of this term with respect W not

which is minus 1 plus two times Y2 and it is W not minus W1X2, the two’s cancelled put which

is why we had two in the definition in the first case we are going to get 1 by M, I will take the

minus out you will see Y1 minus this is nothing but our hypothesis function Y hat 1 plus Y2

minus Y hat 2.

So this means that del J del W not is minus 1 by M sigma of YI minus Y hat I, I equal to 1 to M

you can see easily that this will continue for any M, Now what is this term, this is nothing but the

error, so what it tells us is that the first component of the gradient is simply the sum or the mean

error it is not means square error it is simply mean error also notice you can write Y hat equal to

W not plus W1X as W not X par 0 plus W1 X par 1 and you surely we will call this X par 0 as X

not, you will see the power of this notation later because of this when I said del J del W not I am

going to say X not I, where X not is nothing but 1, it just lets me right this whole expression

compactly. 

Let us look at del J del W1, I will derive this in slightly different fashion just to give you another

tool near tool set 1 by 2M, del by del W1 of sigma I equal to 1 to M of YI minus Y hat I square,

let us deal with this in this form it is self and see if we can do some algebra quickly, so this is

equal to 1 over 2M sigma I equal to 1 to M two times YI minus Y hat I multiplied by minus del Y

hat I by del W1.



So what did I do here instead of expanding Y hat fully into W not plus W1X which I did last time

I am just differentiating this directly so derivative of this term with respect to W1 is nothing but

2 times this term multiplied by derivative of this term simple chain grown, so I am just going to

use this here, so the 2 and 2 cancelled out once again we are going to have a minus 1 over M

sigma I equal to 1 to M, YI minus Y hat I multiplied by del Y hat I by del W1 now what is del Y

hat I by del W1, remember Y hat I is W not plus W1 XI which means del Y hat I by del W1 is

simply equal to XI so this gives us minus 1 , I equal to 1 to M, YI minus Y hat I times XI.

So let us go back to this term here so you see this J here and J here what does this denote del J

del W1 is equal to YI correct minus Y hat I correct times XI is also correct accept I will have X1I

here X1 is nothing but X power 1 which is equal to X, that simply denotation similarly if I take

del J del W not, I will get YI is correct minus Y hat I which is also correct multiplied by X not I,

X not I is simply 1, so it is just compact notation if you are not comfortable with this that is fine,

you can simply write both this terms individually and say that del J del W not is minus 1 by M

times sigma of YI minus Y hat I similarly del J del W1 is minus 1 over M sigma of Y minus Y

hat multiplied by X.
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So what are  the steps of the linear  regression procedure we first  decide on our leaning rate

remember learning rate is required for gradient descent and we also have to decide on what our

stopping criterion is we will make an initial guess for the weight vector then systematically you



will calculate the next iteration, now that you have one weight vector you have one guess for W

not and W1 we will make another guess, how do you guess this by using the formula that we just

derived and once you update your W you calculate your stopping criteria if this works out you

stop, if it is not satisfied you go back here you calculate once more you keep on stepping through

the radius. 

So in the next video we will actually see a code to implement this and hopefully all of this things

will come together very nicely this is another reasons why we insist on doing the code because in

theory  you  might  understand  something  it  is  only  when  you  actually  see  it  practically

implemented into a code that things become clearer we will be using as we had declared earlier

will be using an example through a MATLAB code all of you are welcome to use whatever

programing language that you would like to see but MATLAB is usually the easiest to explain

things as well as visualize things nicely so we will see that in the next video, thank you.


