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In this video we will  be looking at  an introduction to numerical  optimization.  So far the

optimization we had been looking at was essentially theoretical optimization we were just

looking at analytical expressions. In this video we will see an introduction to how we can do

the same thing numerically and specifically we will be looking at an algorithm called gradient

descent which is sort of the work horse for most of deep learning. 
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So why is it that we need numerical optimization? We were looking at shapes of this sort, so

far what we were looking at was a case where suppose you have some f of x and let us say x

is  a vector and has two components x 1 and x 2. In that case if  you knew f of x as an

analytical function of x 1 and x 2, then you could use you know various ideas such as setting

gradient of f equal to 0 and you have standard methodologies to find out what the appropriate

minimum or maximum is.

However, most of the cases what happens is we do not have explicit expressions. So you do

not really know what f is, so an explicit expression would be something of the sort J of w is w

1 square plus w 2 square plus w 3 square plus 4. A small note for starting from this video I

will start talking of optimization in terms of J and w because that is the notation we will

ultimately use when we go to deep learning.

So usually what we know is the function only as a black box so that is some w comes in or

some x comes in and some f comes out. So similarly some w comes in and some J comes out

you do not really know analytical expression is unknown. So this is a proper black box, we

will see a couple of sub cases of this later on in this video, but generally what happens is you

know let us say x 1 is 1, x 2 is 2 and it suddenly tells you that J or f is 5.

Similarly, anytime you given x 1 and x 2 is able to give you a J or an f, but you still want to

optimize it. In such case the methods that we use so far are not really usable. So in this case

in the case of deep learning this black box is typically a neural network or something of that

sort. So what we want to find out something that can deal directly with numbers rather than



with  analytical  expressions  and  that  is  why  you  need  numerical  optimization  as  against

analytical optimization. 
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So here is a simple idea what you want to do is you want to drive the gradient of the function

that you are trying to minimize or maximize to 0. So remember for this we are using the

notation the function is J and the variable that we are optimizing over we are calling that w,

so grad J w, we want this to go to 0 specifically the 0 vector because remember gradient is a

vector, but we do not have an analytical expression for J.

So the iterative process is as follows, you take a guess so this is always the iterative process

in anything not just optimization whichever variable you are trying to find out whether it is a

linear  system  of  equations,  whatever  system  of  equations  you  are  trying  to  solve  or

optimizing you do not know w which is optimum. So you take a guess, okay. So here the

super script k refers to the iteration number we will see a few examples later on in the slide.

So you take a guess, so you run through the black box this gives you a value this gives you a

value of J, this might or might not be the optimal value, if you are a really good guesser you

will automatically get right value but generally you will not, okay then you find out gradient

of w. So now a question might arise if you only have a function as a black box how are you

going to find out gradient of w, we will discuss this in the subsequent video but assume that

you have a method of finding not only J but also gradient of J as a number.

Now suppose this gradient turns out to be 0 you stop if not you take a guess you take a new

guess. Now how do you take a new guess? Will you guess this randomly? No it turns out that



there are specific methods to find out improved guesses, based on the w you got and the grad

J you got you can actually get a better guess. So this method of improving your guess is what

is called gradient descent. 
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So let us take the example of a gradient descent in a simple scalar case, simple scalar case

like J of w where w is now a scalar a single number. So let us say it looks like this we did

may not know what the specific function is? We just need to know that we are trying to get

here. Now let us say this is the actual w optimum but your guess is this let me call it w 1 or w

0 this is our guess.

Now when you take this guess the J u get will be corresponding to this guess so this is J, this

is w and we can automatically see that this is not optimum, why is this not optimum? Because

at this point dJ dw is not equal to 0. Now if you treat this as a game from this w you have two

choices you can either move to the left or you can move to the right in order to improve your

guess. 

Now looking at this picture we automatically know that we have to move to the left, how do

we know this? If you find out the slope at this point, so dJ dw here is actually positive. If it is

positive we know that 0 lies somewhere here, so you actually say w is w minus something,

this something often is written as some alpha (multiplying by) multiplied by the slope so that

if you are here and the slope is negative you actually will go to the right so this is the simple

idea behind gradient descent.



Our task is basically to improve our guess for w. For a scalar this is fairly straight forward,

the new guess is the old guess minus alpha times (dJ w) dw where alpha is an arbitrary

parameter, okay it is a positive arbitrary parameter this parameter is often called the learning

rate we will see that once again now.
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So now let us take the more complicated vector case. So you have a whole manifold let us

say  once  again  you have  J,  w 1,  w 2 once  again  you guess  we can  see  that  the  actual

minimum  is  here,  what  is  drawn  here  at  the  bottom  are  contours,  recollect  from  our

discussion of multi variable calculus the contours basically are collapsed. So if you think of

this as a series of rings each of which is of constant value, if you collapse all of them this is

the kind of contour that you will get, these contours are what are called level sets basically

lines of equal value.

You would see this also in something like if you see the weather channel you will see this,

you will see lines of constant pressure or lines of constant temperature which are moving

around, so they are a representation of the function. So suppose here is just the contour drawn

so on one line the value of J is constant. So we want to come to this point which is actually

the minimum, but instead let us say I guess somewhere here this is my w guess so somewhere

here is my guess the first guess is here.

Now I want to move in the right direction, now remember moving unlike 1D now is will be

in two directions, okay. So the delta w or the change in w that you have give actually is a full

vector, you have to say how much you want to move in x and how much you want to move in



y direction, okay so you have to give both these. Luckily for us we have a nice theorem

which says that we can move in the direction which decreases the maximum.

So for example if you are here you would like to move in this direction where the decrease is

the sharpest so that you can think of this as a ball which is rolling downhill and you want to

go as fast as possible to the bottom. So you would like to move in the direction where the

change in J is the maximum or is the steepest and it turns out that the gradient gives exactly

the direction that we are looking for, okay.

So we will show a quick proof of this actually not nearly at the end of this video but in the

next video but we will show a quick proof of this. So the general gradient descent algorithm it

turns out is a very simple generalization of the scalar case. The new w remember this is a

vector is the old w minus alpha times grad J which is also a w, okay. So you take the steepest

descent direction multiplied by a parameter just to adjust the size of the step and then move

from there, this will become a little bit clearer as we go through a couple of examples alpha is

a very important parameter call as I said earlier the learning rate this is something that we

have to choose.
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So let us take an example let us take a very simple function for which we already know the

minimum. So let us take the function J’s w 1 square plus w 2 square plus 4 we know that the

bottom is here the actual minimum is at 0 0, here are the contours which are drawn here,

these are circles these are circles because J is a constant when w 1 square plus w 2 square is a

constant which means these are circles centred at 0, okay.



So let us take the gradient of this analytical gradient is simply 2w 1, 2w 2 vector. So the

iterative formula that we get for this is remember w vector new is w vector old minus alpha

times grad J vector, this grad J has two components so which means w 1 is w 1 minus alpha

times the first component which is 2w 1 as I have written before. I have denoted k plus 1 and

k instead of old and new, so old I am calling k, new is called k plus 1 so that we can keep on

iterating so start from the first guess to the second guess and so forth, okay.

Similarly, the second component also works the same way 2w 2 k comes from the second

component  of  the  gradient  so  this  is  the  iterative  formula.  We know  that  the  actually

minimum is at 0 0 as we said, let us start with some random guess suppose we give a bad

guess of 3, comma 4 so that on this curve is somewhere here so this is my first guess I want

to go here this is the ideal w star.

So now how we can proceed is by actually choosing some value of this constant alpha this

alpha so we will take 4 different choices just so that you can see a range of behaviours for

what happens. So let us say alpha is we will start with alpha is 2, we will look at 1.1 and 0.5.
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Okay so let us start with alpha equal to 2 we are starting at 3 4 let us say alpha is equal to 2.

So let us look at a simple table, so let us look at iteration 0 this is our initial guess, our w was

3, comma 4. I am not putting the transpose each time please understand that I am treating it as

a row vector instead of column vector but works the same way. Now grad J is simply 2w 1

2w 2 which is 6, comma 8, J the cost is 3 square plus 4 square plus 4 remember 3, comma 4

so this now comes to 29.



And now we can calculate w k plus 1 which is 3, comma 4 minus alpha which we choose to

be 2 multiplied by 6, comma 8 and if you calculate it, it comes to minus 9 minus 12 so it has

gone far away, okay so we started here and we have gone somewhere outside of the picture

and you can see that this is actually not doing quite well I would like to come here but I have

gone far away somewhere else but let us see how it goes further.

So suppose I start with minus 9 minus 12 and then proceed again using the same formula

grad J is 2w 1 2w 2 which is minus 18 minus 24. If you calculate J, J has actually increased

ideally we would like J to always decrease this does not always happen in gradient descent

but you can see that it has increased tremendously, okay. If you calculate w k plus 1 now it

has come to 27 36 so all the way from here now you have gone somewhere else.

If you see in this picture you were you started somewhere here 3, comma 4 at this point and

then we went somewhere far out, then we went somewhere else so we are actually going

further and further away. So if I put 27 36, I see that my J has increased from 229 to 2029 and

w has become worse. So this kind of process where intuitively we see that J is actually not

coming down but is going further and further away from the actual solution even if you do

not know the actual solution you can atleast see that J is increasing so J our cost function is

actually increasing and we are going at worse and worse places rather than better and better

places. So this is a case which is a divergent case of alpha.
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So unhappy with this we try a slightly lower alpha it is always a good prescription to try

lower alpha in case a higher alpha does not work. So once again we start here but instead of



alpha equal to 2 if we use alpha equal to 1 we get minus 3 minus 4 which atleast seems a little

bit better. So you started here 3 4 and we came here minus 3 minus 4 you wanted to come

here maybe hopefully we will come back there.

So we now put minus 3 minus 4 the corresponding grad J is minus 6 minus 8, J unfortunately

has not decreased because it is w 1 square plus w 2 square and if you try and find out what w

k plus 1 is which is minus 3 minus 4 minus 1 times minus 6 minus 8 you will get 3 4, so now

you are back here. So now we are sort of stuck in a cycle, it basically oscillates between two

points 3 4 minus 3 minus 4, 3 4 so on and so forth it just goes back and forth, J does not

decrease at all in fact in this case.

So this case is also not useful for us because we would actually like to systematically come

towards the actual minimum so this is an example which does not converge at all.

(Refer Slide Time: 16:58) 

Let us take a third case which much smaller alpha which is 0.1, okay. So if we go through the

exercise now all that has changed from the previous two examples is the alpha that I have put

which has become 0.1 and you see that this has become slightly better now so you have come

to 2.4 3.2 somewhere here so we have got a little bit better atleast it looks promising and we

can now check what happens as we do future calculations.

You will also notice that slowly now instead of either increasing or getting stuck at the same

point J is actually decreasing. So I would recommend that you do this exercise yourself you

will also see one such example problem being given in the assignments but you can see now



that from 1.9 to 2.5 it has come to 1.5 2.0 which is a little bit better once again okay so

getting somewhere here so slowly we are approaching the origin.

Now if you keep on repeating the exercise so this is now the 30th iteration not just the second

iteration so we wrote a code and if you see the 30th iteration you will see that it is actually

getting quite close to 0, the cost has actually come very close to the minimal cost, why is 4

the minimal cost? If w 1 and w 2 were 0, the actual cost would be 4. So you are actually

converging slowly and we have come somewhere here over the 30th iteration. 

Now a couple of things are worth nothing here one is that we have not actually come to the

total minimum 0 0 and in fact if you use alpha equal to 0.1 you will never really come there

because it will only keep on multiplying by small factors there is no way that you can get 0 0

out  of  this.  So  you  are  actually  only  slowly  converge,  theoretically  it  will  take  infinite

iterations in order to get to 0 0 but numerically we know that below machine epsilon it will

anyway stop.

So if you need to find out the absolute minimum where you know your grad J goes to 0 you

might actually need infinite iterations which is why we actually need a stopping criteria, we

need to say something like okay I am happy with two decimal places of accuracy, we will see

how to do that in the next video. 
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In the meantime,  let  us look at  another  alpha,  alpha equal  to 0.5 by now you should be

familiar with the whole process. So if we put alpha equal to 0.5 you actually get 0 0 right at

the first step. So you start here, we come here. Now what happens to the algorithm once it



comes to the right minimum? So if you come to 0 0 note that grad J is also 0 0 because this is

the actual minimum, J is 4 of course and w k plus 1 is 0 0 because it is 0 0 minus alpha times

0 0 so it is just there.

So in all future iterations it will always stay at 0 0, so this is an advantage at gradient descent

because you have w is equal to w minus alpha grad J, the moment grad J goes to 0 you will

actually w will stop there, of course you can have this at a false minimum something like a

saddle point also it can get stuck, but we will see cases of that sort in the coming weeks. The

important thing here is alpha equal to 0.5 actually converges quite rapidly.
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So what we have seen so far is that it is possible for the gradient descent algorithm to either

diverge  which  we  saw  for  alpha  equal  to  2,  or  it  could  oscillate  without  diverging  or

converging,  it  could  converge  slowly  which  we saw with alpha  equal  to  0.1 or  it  could

converge quite rapidly which happened with alpha equal to 0.5, okay. In practical algorithms

you will probably never see a case such as alpha equal to 0.5 where in one step you are going

to get to the right answer, okay so that will almost never happen.

But typically you are going to see some manifestation of either slow convergence or fast

convergence. So all this depend on the learning rate alpha, part of algorithm design what you

will have to do as a user is to choose the right alpha. There are methods which have some

variations on this which we will discuss in the coming weeks, but alpha is what is called a

hyper parameter, okay.



A hyper parameter is a parameter that must be set before your learning algorithm actually

starts, okay so even before you actually learn you will actually have to set some parameters

alpha is just one such example. In fact an open problem typically in neural network and deep

learning research is what is called calculation of hyper parameters, okay so design of hyper

parameters and coming up with optimal hyper parameters.
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In the next video what we will see is some of the details of gradient descent. For example, we

will  see a proof of the steepest  descent  property the fact that  the gradient  represents  the

direction of steepest descent. We will also look at the point that I mentioned briefly for the

alpha equal to 0.1 case which is you need to decide when to stop the algorithm, you will

never get actually to full minimum but you need to decide when to stop, okay.

And the third thing which we have to find out is finding out how to calculate gradients when

there is no actual analytical expression for J available. So these are the three issues that we

will be discussing in the next video, thank you.


