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In this video we will be looking at some beginning of optimization specifically unconstrained

optimization. 
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So the relevance of optimization machine learning is very very high, as we saw in the first

week the basic idea behind most of machine learning is that you want to build models so data



models that input they take some input and map it to output data. Now usually (what the) our

maps depends on certain parameters and the way we improve our models as you will see in

the next week is based on something called training that is you give more and more data ad

try and improve your parameters. 

So usually you would like to know how much does your output change depending on the

parameter, so you have some quantity which is a vector quantity that is changing based on

some other vector  quantity. So most of it  most of our machine  learning is  dependent  on

finding out the best or optimal model for some given set of data so most machine learning

problems can usually be rewritten as optimization problems. 

So what we will be doing in the next series of videos is to try and introduce as well as review

some of you will be familiar with some of these ideas already so we will try to introduce

some optimization techniques in the coming videos.
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So typically what you try to do in a general optimization task is to maximize or minimize a

function once again like in the previous videos this function can be something that takes in a

vector and gives out a scalar. So this function the one that you are trying to maximize or

minimize  is  called  an  objective  function  or  a  cost  function  or  a  loss  function.  So  this

terminology is used interchangeably.

So the function usually in a general optimization task can either be a scalar and this is called a

single objective optimization problem or you can have f itself as being a vector. So in that

case it could be a multi objective vector and in this course we are going to restrict ourselves



to  this  case  to  the  single  objective  optimization  problem is  of  even  that  is  an  involved

problem.

So we will be only dealing with that and this is actually true of most of practical machine

learning anyway we try and define a cost function or an objective function which is a scalar

for itself, x in general remember is a vector and typically we are going to deal with the case

where f goes from R n to R. So an example of such an f for example could be f of x vector

which is 3 dimensional, so x 1 square plus x 2 square plus x 3 square, here f is going from R

3 to R. 

Now even though the general optimization task is to either maximize or minimize a function,

we will  typically  talk only about  minimization because all  optimization  problems can be

called as minimization problems, why? Because if it is a maximization problem you simply

minimize minus f of x, so whenever I will be talking in the next few slides as well as in the

next video I will only be talking about minimization because maximization is a trivial change

by simply changing the sign.

Now here is some notation the optimal solution let me write the right word optimal or the

minimal so we will be writing that as x star this star denotes optimal. Now notice the term arg

min, min of f of x would simply mean minimal value of f, arg mean of f of x is that x which

results in minimum of f. So just to give you an example if f of x is let us say x square plus 1

then minimum of f is 1, but arg minimum of f is what value of x gave you the value of f equal

to 1 this is x equal to 0. So we will be using this notation quite often, arg min is that argument

or that value of x which gives us minimum of f of x.
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So here is a quick review of scalar  optimization,  so as you remember if you have some

function f of x versus x it is in general going to be a curve and you are going to have various

minima for now we are going to look at the unconstrained problem, unconstrained problem

means there are no constraints on x there are no limits on x, we are looking at x belonging to

the whole of the real line, we will look at the constrained case in the next video for now in

this video we are only looking at the unconstrained problems, so we will assume x can go

from minus infinity to plus infinity, okay.

So in such a case you could have some global minimum and global maximum and you could

also have a local minimum and local maximum that is locally if I just put a box here all the

values around the local minimum are greater than the minimum local minimum but this might

not be the global maximum or the global minimum. 

Now it can be shown that both these extrema we are not going to show it but both these

extrema whether it is local minimum of local maximum all of them will have the property

that f prime x equal to 0 in the unconstrained case. So these points are called stationary points

or critical points. So the stationary point as I have just shown could be a local minimum or a

local maximum or something called a saddle point.

Now how do we figure out whether it is a local minimum or a local maximum? Typically you

look at the second and higher derivatives we will look at just the second derivative case here.

So if f double prime x if the second derivative is positive for example here in such a case it is

a local minimum. For example if you look at the slope here you will see that the slope of the



slope  okay  so  as  I  move  away  from here  the  slope  increases  which  means  that  it  is  a

minimum here.

So here the slope is 0, here the slope is positive so that is why del square f del x square is a

local minimum as an exercise you can try and proof this, this is an optional exercise for those

who are interested you can try and proof this using the Taylor series. Similarly if f double

prime x is less than 0 then it is a local maximum once again it has the same idea. Now it can

happen that your f double prime x is actually 0, in such a case it is called a saddle point this

for example is if you look at f of x equal to x cube around x equal to 0 this is precisely what

happens.

Now what is happening here? This is like the shape of a horse’s saddle as we will see in

multiple  dimensions  also.  You will  see  that  in  this  direction  there  is  an increase,  in  this

direction there is a decrease, it is sort of the combination of this curve and this curve. So from

one side it looks like a local minimum and from another side it looks like a local maximum.

So this happens when f double prime x is also equal to 0 and in such a case it could be a

saddle point. All of you are familiar with the notation of global maximum and minimum this

is the absolute maximum or the absolute minimum that you will get over all of space.
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So now let us look at the multivariate case. In this case you are trying to find out f of x once

again which is x that minimizes f of x, but x now belongs to R n instead of simply belonging

to R now it belongs to R n, once again we are looking at the unconstrained problem there are

no constraints on x. Now as we saw in the derivate and gradient slides since now x is a vector



quantity we will now have to evaluate instead of simply df dx, you have to now evaluate the

gradient of f.

So in analogy to what we saw earlier any local extremum, so for example here this is a local

extremum in this case the gradient will be 0, remember this is the 0 vector which means del f

del x 1 will be 0, del f del x 2 will be 0, so on and so forth if it is an n dimensional vector x

del f del xn is actually going to be 0. Once again these are called stationary points or critical

points and like in the 1 dimensional case you could have a local minimum, local maximum or

a saddle point. 

So some examples  are given here,  this  is  a local as well  as a global  maximum, here for

example is a local minimum which is not a global minimum because there are values lower

than this going on and this is the example of a classic saddle point, in one direction it is a

local maximum and in another direction it is a local minimum so that is what a typical saddle

point looks like.

Now how you find out whether this is a local minimum, maximum or whether it is a saddle

point now depends on the Hessian rather than the simple second derivative remember for

vectors the generalization of a second derivative is the Hessian, okay. So as we saw in the

previous slides Hessian now is a matrix, now unlike before I cannot simply say Hessian is

positive that has no meaning because it is a full matrix.

So when Hessian is positive definite, you might remember this from the linear algebra slides

what does positive definite mean? Positive definite means all eigenvalues of H are positive.

So this is not even positive semi definite you have to have all values of H being actually

positive. So if that is the case and remember since the Hessian was a symmetric matrix we are

guaranteed to have real eigenvalues so that you can talk about this meaningfully.

So if the Hessian is positive definite then it is a local minimum, if the Hessian is negative

definite which would mean all eigenvalues are less than 0 then it is a (local minimum) sorry

local  maximum and if  the matrix  is  indefinite,  what  is  meant  by indefinite?  It  is  neither

positive  definite  nor  negative  definite.  So  some  eigenvalues  are  positive,  some  maybe

negative or some even if they are 0 then it is a saddle point, thank you.


