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Derivatives, Gradient, Hessian, Jacobian, Taylor Series

This  week  we  will  be  dealing  with  optimisation  and  as  you  would  know  from  your

experience in school as well as in college, almost all optimisation involves you to find out

derivatives. So in this video we will be looking at derivatives so little bit of warning both this

video and the next one which will deal with what is called matrix calculus, they will be

widely advanced material.

Some of it you will once again be already familiar with in the one-dimensional context or in

the context of scalars and we will be looking at the context of vectors also. We have only a

few slides to go through both in this video as well as in the next but the materials are little bit

dense so please concentrate on this material and if it is not very-very clear, you will still get

clarified as the course goes on okay.
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So let us first look at the idea of derivatives which is essential for any sort of optimisation. So

derivatives typically  measure how one quantity changes when there is  a small  change in

another. So if you have something like dY dX it means how much does Y change given that

X changes buy a certain amount okay. So, as you would know geometrically in a simple

scalar case we look at this as the slope of a tangent okay. So if this is the curve Y = F of X



then if this is the point let us say p, if you differentiate Y with respect to X at X equal to p you

will get the slope of this tangent, of course you can denote this as dY dX at X equal to P or

you can denote this as F prime, some people will simply call it p or people will call it F prime

X equal to p so there are multiple ways of denoting this, you would be familiar with all of this

once again from your prior experience.

So we know that this slope essentially is can be written as limits of a small perturbation of X,

so X + H – F of X by H, this of course is the limits of this secants ok as they go towards this

point and become a tangent, so the slope at this point X and X + H, so you find out the

difference in values and as this limit tends to 0, the slope will tend to a finite value and that is

what we call the derivative of the slope at that point. Now, when you have higher dimensions,

by higher dimensions I simply mean you still have a scalar function but X now is a vector

okay. So in that case, X vector could be something like let us say X 1, X 2, X 3, or the figure

that I will show shortly could be X factor is X 1, X 2 which means X belongs to R 2, this is

the case where X belongs to R 3 okay.

So in such a case we can have partial derivative, so let us look at such an example let us say Z

if F of X and Y okay, now if you want to denote or visualize Z, you simply have the variables

X and Y, as they change Z changes and you see here 1 whole surface okay for Z. Now I could

want to know what is Del Z, Del X ok that is at a particular point let us say this point I might

want  to  know if  I  just  change  X and I  keep Y fix  you would  have  seen  such  thing  in

thermodynamics perhaps but if change X and keep Y fix, you might want to know how much

does Z changes.

Now the way to see that geometrically through let us say you draw a cross-section something

of this sort okay. Let us say Y is fixed at Y equal to in this case 1 and you can try and find out

what this derivative is. A generalisation of this idea is with N variables okay, so here F is a

function that takes in a vector, in this case the vector is A, which is in R N which has N

components and it gives back a single scalar.

And if you want to find out Del of Del X I that is just like in this case I want the derivative

with respect to X then all you do is you change only that variable so in this case for example,

I change only the Ith variable, I perturbed it by a little bit so I do A I goes to A I + H and then

find out how much does the function changes when I just change this variable and that limit

as H tends to 0 is what is called the partial derivative of F with respect to the variable X I

okay.



Now reduced to a one-dimensional problem this is what it would look like, this is simply the

cross-section of this function at Y equal to 1 and if I want the slope now then all I will do is,

let us say I will change X by a little bit. So suppose I want Del Z, Del X at X equal to 1, Y

equal to 1 then I take a cross-section, where Y is fixed at 1 and evaluate the slope at X equal

to  1  by  just  changing  X  and  that  slope  will  actually  gave  me  the  value  of  this  partial

derivative okay, so this is the idea of partial derivative again you should be familiar with this

from multivariable calculus before.
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Now we can generalise this idea okay, of derivatives to what is called the gradient which we

will be using very-very often okay once again. So let us say you have let us call this X, Y and

F of X Y, you can call it Z = F of X Y okay, so you have a curve of this sort okay. There are

several noticeable things here, so suppose I want to say how much does the value of the

function change at this point that notion by itself does not become intelligent unless you say

how much does it changes with X.

So you have Del F Del X and you also have Del F Del Y okay. In fact, instead of just looking

at these 2 directions so Del F Del X would be the change in the direction X and Del F Del Y

will be the change in direction Y, you could ask a 3rd direction, I could call it Del F Del V,

where V is some arbitrary direction okay. So if this  is X, this  is Y, V could be some 3 rd

direction altogether.

So the gradient is defined as basically a concatenation or putting together of all these partial

derivative, so in this case with the two-dimensional case we have to search partial derivatives,



in the n dimensional case you will have n such partial derivatives and you would basically

write the gradient of F in my case would be Del F Del X 1, Del F Del X 2 okay. So in the n

dimensional case it is Del F Del X 1, Del F Del X 2, so on and so forth up till Del F Del X n,

and I have put a transpose there to show that this  is a vector, some people eliminate the

transpose, some people put the transpose either is fine. In this case now notice this is a vector

and we look at a more general case of this in the next video which would be matrix calculus

video but this gradient is used very-very often okay.

Now what does the gradient physically represents? Okay, so if we see that here are couple of

figures to clarify this idea, so let us look at the 1st figure. The 1st figure is just showing the

shading, now imagine this curve here, if it is collapsed okay imagine it is a bunch of springs

and you just collapse it and you will see these things here, the projection here are called

contours, what does the contour mean? If I take this contour and raise it up to the curve, it has

all the values at this value of X and Y all of these places Z has the same value okay, so these

are what are called level sets or contours which we will look at a little bit later in this video

series also.

Now this is shaded according to value for example, here the value of the function is high,

here the value of the function is low so the place where the value of the function is high is

shaded as dark black and later on it is shaded white okay. Now the gradient notice is a vector

and the direction of the gradient tells you in which direction is the change the sharpest okay,

so the change is the highest in the direction of the gradient okay. So in this case for example

all the change is the sharpest in the horizontal direction okay. This of course is colour-coded

now okay red means high, blue means low so this is just simply colour-coded but it is the

same idea. Some of you who have worked in fluid mechanics might have seen this or even in

other fields. So now you notice this, these are arrows here and the arrows are aligned along

the direction of maximum change.

Now if you have a more complex curve something of this sort, once again you can draw the

gradient field, why is it the gradient field at any point? I have an F, I have Del F Del X 1 and I

have Del F Del X 2, these 2 put together define a vector and that vector is what is drawn here,

longer arrows means higher gradients and shorter arrows means lower gradient. Now one

useful way of utilising the gradient vector is as I told you before, you might not only want

Del F Del X and Del F Del Y, you might also want Del F Del V, where V is some other

direction. So suppose X and Y are orthogonal and V is a 3 rd direction, suppose you want Del



F Del V, what does that mean? Physically it means if I move in the direction V or V hat, how

much will the function change?

And this is fairly easy, all you do is take the gradient which we have defined before, this is

Del F Del X 1, Del F Del X 2 so on and so forth up to Del F Del X n, this vector dotted with

the direction V ok. You can simply see special cases if V was I cap okay or the X 1 direction

then gradient in the direction V should be Del F Del X 1 which is correct okay, so this retains

the meaning of partial derivatives. Similarly, if you take the direction 2 you will get Del F

Del X 2 so on and so forth, so for the coordinate axis this kind of reduces trivially but in the

general case you simply take a dot product along that direction.
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So next we come to the idea of hessian, this is basically the gradient of the gradient. Now

remember, we will see this once again in the next slide, the gradient is a vector now you are

trying to find out how much does this vector change okay as you move in space. Now why

would  he  would  use  some such  complicated  quantity  because  it  is  equivalent  of  the  2nd

derivative in scalar calculus.

So  all  the  uses  that  we  had  for  2nd derivative  like  finding  out  whether  something  is  a

maximum or minimum all those uses also pass on to the hessian as we will see in some of the

videos in this week okay. So suppose F is a function, remember what this means F is taking

in, it is a box that takes in a vector as input so X is a vector and what it gives out is a scalar.

In such a case the hessian is defined as Del square F Del X I Del X J okay, so hessian is a

matrix, every entry of the matrix is basically a partial derivative, F is a scalar so first entry is



for example, Del square F Del X 1 square so the N comma 2 entries; Del square F, Del X and

Del X 2 so on and so forth,  this  is  N cross N matrix.  You can also notice that this is a

symmetric matrix, notice that these 2 derivatives are just the same, Del square X Del X 1 Del

X 2 is the same as Del X 2 Del X 1. So hessian is a symmetric matrix and from our linear

algebra  we  would  know that  from real  F  this  means  hessian  has  real  eigenvalues  okay

eigenvectors, so we will use this property little bit later.
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So one other  quantity  that  we  will  like  to  define  is  that  of  a  Jacobian,  the  Jacobian  is

equivalent of a gradient for vector valued functions, so the gradient remember then we had

defined simple  gradient  was  from scalar  to  vector  but  this  assume that  the  value  of  the

function itself is a scalar. Now you can define a more general case where you have a vector

input and a vector output, a Hessian that we just looked at is very similar, you can see this as

the Jacobian of a gradient so the hessian took in the gradient of F and gave out Del square F,

where F is a scalar but grad of F is now a vector. In general, we define the Jacobian as Del

square F of X I by Del X J, remember that since F is now a vector, it is going to have a Ith

component.

So in general we are going to have Jacobian which is going to be M cross N, if it takes in a

vector, the size of the vector is N cross 1 and it gives out a vector which is M cross 1, so you

can write the whole of the Jacobian as a simple matrix okay. So we will be using Jacobian

only very rarely, but some general expressions we will show in the next video.
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So the final idea for this video is that of a Taylor’s series, the Taylor’s series is extremely

useful  whenever  you  try  to  approximate  functions.  So  this  is  very-very  widely  used  in

science, one of the most commonly used ideas in science, practically anything that people use

mathematics and calculus for somewhere or the other Taylor’s series will pop-up okay, so this

is true even of course for machine learning and optimisation okay. So there are of course

many subtle things about this Taylor’s series we are not going to look at that, we are just

going to look at the single slide for Taylor’s series and then we will be using it a little bit later

both in optimisation as well as in other parts of machine learning ok.

So remember that when you have scalar function one-dimensional function that the kind that

we use in school for example, F of X = e to the power X Sin X or something of that sort okay,

you can write the Taylor’s series as F of X is F at some other point X 0 okay so you want to

approximate the value at some value X given that you know the value at X 0, you also know

derivatives at X 0, etc so this is the basic idea of Taylor’s series okay. So if you have F of X,

it = F of X 0 + X – X 0 times dF dX, this df dx is calculated at X equal to X 0 + half of X – X

0 square D square F dX square, this is also calculated at X 0.

An example of this which you might or might not have realised is our idea of S = U T + half

A T square okay, so that is very-very similar to this you know dX is like U and D square F dX

square is like A, this is the time that has elapsed, this is T-square so the half is very similar to

that, S is the total distance travelled okay so that is the special case of the Taylor’s series and

you can easily explained it in the Taylor’s series if you have more than the acceleration. So if



only U and A exist then S expression would be what I told you but if you have U, A and what

is called the jerk which is the 3rd derivative of this distance with respect to time then you

would have that + 1 by 6 X – X 0 d cube F dx cube so on and so forth.

So the Taylor’s series should be familiar to you but most probably you would have not seen it

in the case of vectors okay. So in case X instead of being a scalar it is now a vector, you can

now write the Taylor’s series, notice the similarities between these 2 expressions, F of X now

remember X is a vector is F of X 0 which is the same thing + now notice this is a vector okay.

X – X 0 transpose times G, G is the gradient okay just for compactness I have written this as

G, so instead of dF dX now you have a full gradient, this is a full vector, this effectively is the

dot product between one vector and the other okay.

This remember is something that we had discussed earlier, this is called a quadratic form, so

we have X – X transpose H X – X 0, it is still in the scalar case will be equivalent to X – X 0

square okay, but in the vector case you cannot write it as X – X 0 square, it  is X – X 0

transpose H, H is the hessian which we had seen earlier multiplied by X – X 0 + higher-order

terms.

Luckily practically nowhere especially in the vector case do people use this okay, so this is

usually maximum that we will go. So we will go to the 1 st order term which is the gradient

and  the  second-order  term which  is  the  hessian  and  this  is  sufficient  for  most  practical

purposes okay. So, as I had said earlier we had defined G as the gradient and H as the hessian

also calculated at X 0.

So this is just some preliminaries for a multivariable calculus, we will be using all these ideas

only sparingly but you do need it in terms of rebuilding your intuition, so in case if it is not

clear please revisit this video a few times. In the next video we will be looking at a few

simple mathematical relations in matrix calculus okay like this one that is slightly advanced

material.


