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In this video we will be looking at how your machine how your computer represents numbers

okay and a few phenomena which can go wrong when we think that the way the computer

processes  numbers  is  the  way  we  do  things  on  paper  intuitively  okay.  So  this  idea  is

something called overflow and underflow, we will also look at another idea called condition

number, most of the examples not the slides but just the examples that we have taken is from

a good book, an introductory book for numerical methods by Steven Chapra.
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So let us look at the idea of machine arithmetic, so in the previous slides when we were doing

optimisation, we were doing it theoretically so if you want to find out the minimum of a

function, you will simply say that the gradient at the minimum or at the optimum is 0. Now,

in order to do this if you were to do it on paper or if you do it using symbols, you will assume

usually real number arithmetic okay, you will assume that you can calculate digits to as much

precision as  you want.  We will  also assume you know you will  say that  you know if  I

differentiate X square with respect to X, I am going to get to X but in practice remember we

do not deal with symbols, we infect do not even deal with images, as I have said multiple

times so far, we actually deal with only Numbers okay and specifically numbers of finite

precision as you will see, this will start making sense as you go a little bit further.

This kind of arithmetic is called finite precision arithmetic or machine arithmetic ok. In some

cases you can call it “Floating point arithmetic” which is the most common as far as we are

concern in the special case of floating point numbers. Floating point number means of, the

numbers where we deal with the real numbers rather than with integers. Now, the fact that we

have  only  a  finite  precision  can  actually  have  surprisingly  important  and  sometimes

surprisingly catastrophic consequences okay, so let us take one such recent example ok.
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So the example is that of Ariane 5, this is a European launch vehicle, it is the very 1 st test in

the Ariane 5 configuration, when there were of course Ariane... 1 to 4… was on June 4 th 1996

okay so the launch seemed normal until the first 37 seconds okay. After that dramatically I

would recommend that you take a look at the video on YouTube or something if you simply

put Ariane 5 you know launch or something, you will get this video.

So if you take a look at what happens, at approximately 37 seconds after launch the rocket

suddenly turned by 90 degrees incorrectly this was not planned of course. The boosters were

ripped apart and the vehicle basically it had a self-destruction instructions sitting there and it

self-destructed automatically so it  is a giant loss approximately you know estimates vary

between 350 million to  500 million US dollars,  it  is  perhaps  one of the most  expensive

problems that was caused due to software failure ok so simple software failure cause this.

And what really happened if you dig into it was most of it was ignorance or not ignorance

really people did not really adequately take care for the fact that we are doing finite precision

arithmetic ok rather than real arithmetic in some sense okay, you will see how that happened

little bit later.
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So let us look at this, machine has a finite number of bits okay, unlike you know how a

human being writes,  if  you require  more precision you simply  keep on adding digits.  A

machine has finite number of predetermined number of digits ok, you can think of these

digits you know whenever you store a number you can think of them as individual boxes and

in each box either 0 or 1 will be stored. As you know for most part all of our arithmetic is

done in binary basically to 0 or 1 system, every single thing is actually represented in terms

of zeros and ones that is both the power as well as you can sometimes see there can be a

problem.

So let us take a simple integer okay, so if you have an integer like 173 which is what we

would call it in base 10, you can now write it in binary, you would have all done this in

school, you will have this long representation because it can be written as 2 power 0, this is of

course the representation for 2 power 0, 2 power 1 there is no representation + 2 power 2, 2

power 3, 2 power 4 has no representation, 2 power 5 + 2 power 7 can be written as 173 ok.

So as far as the machine is concerned, it is going to look like stuff like this, so you are going

to have about 8 digits here ok and you will have some 1s and some 0s and each box can either

store a 0 or it can store a 1 okay.

Now suppose instead of 173 you have something like - 173, now what are you going to do?

what we do in terms of representation in a machine is to use something called a sign bit ok,

the sign bit will be another box upfront here, though we will see how we actually do it so this

if it is 1, the machine will interpret it as negative, if it is 0 it will assume that the integer is



positive ok.  Now I had 8 boxes here but  let  us say I  have a 16-bit  machine or a 16-bit

representation, 16-bit simply means I have 16 boxes now ok.

So you will have something of this sort, remember the very 1st one the leftmost bit is what is

called the sign bit, if it is 1 it basically means it is negative, the rest of it essentially represents

the magnitude, in this case I have just copied this from there to here. So this number will be

interpreted as -173, the - comes from here, 173 comes because all these are 0 and this is 173

ok. Now this has an implication, implication is that there is a maximum number that you can

represent on the machine okay. That is because if you run out of digits or run out of boxes to

store your number, you can no longer represent a large number, this is somewhat similar to

calculators okay.

So if you have a calculator with 8 digits, you cannot store a number which is greater than 8

digits of course we will account for exponents a little bit later even in this video but the main

point that I am going to make here and if you get nothing else in this particular video, please

take away this one single point that there is a maximum number that the machine can store

accurately and there is also a minimum number that the machine can store accurately ok. So

in this case if you see the maximum minimum for 16-bit okay, remember one of the bits has

been used here for sign so you have only 15 less so you can represent 2 power 15 - 1 which

comes to + - 32000 something ok. So similarly if I increase from 16 bits to 32 bits, I will get

to power 32 - 1 okay or 2 power 31 - 1 etc.
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Now, this was about integers, you have similar representation for floating point, once again

you are free to skip these lines as long as you understand particularly that there is a minimum

and maximum number on the computer, even a floating point number that you can use on the

computer ok. So real numbers can also be represented in binary so let us say you have the

number 5.5, it can be written as 4 + 1 + 0.5, 0.5 of course is 2 power - 1, so you will write it

as so you notice this representation, 101.1 because after point what comes is the negative

digits which is similar to how we deal with decimals because after the decimal whatever

comes here suppose we have 0.3, this is 3 into 10 power - 1 in the base 10 representation, and

one digit after that would be you know 10 power - 2, similarly here too.

Now we have a more compact notation which we usually call the scientific notation even in

calculators, so instead of simply writing it in terms of decimal places you can actually get

more  numbers  if  you present  it  this  way, +  -  some numbers  times  the  base  power  and

exponent okay. So S is what is called a significant which contains all the significant digits of

the number, these the base we are using which is let us say if we are using base 10 it is 10, if

it is 2 if it is a binary digit then it is base 2 and E is the exponent that we are using. So for

example, if you have the number 0.001234, you would write it as 1.234 10 power – 3, where

1.234 is S, 10 is the base and exponent is - 3 okay.

Now it turns out that in binary you can get as I talked last time that if there is a maximum

minimum number on the computer, you would like to increase this maximum minimum as

much as possible. For binary number the first digit will always be 1 okay because if it is 0,

we ignore it, we are only going to look at significant digits starting from 1 so we remove that

one away and instead of S we write it as 1 + F into 2 to the power E and this gives you a little

bit of extra numbers to store okay. So for example, the same 5.5 if I write it as 101.1 in

binary, this will be 1.011 into 2 to the power – 2 and this can be written this should be 2 to the

power + 2 I am sorry okay. So this is 2 to the power + 2, so this can be written as 1 + F, this is

the base and this is the exponent close 2.

F is called the mantissa and E is of course the exponent, now note that the numbers that we

have given whether it is F or whether it is E now needs separate bins, so you have to store

this 0.011, you also have to store these two into separate bins ok. So for a 64-bit storage

scheme which is fairly standard for what is called double precision, we store digits this way.

You keep one bit for the sign, you keep 11 bits for the sign exponent that is this E ok and you

keep 52 bits  for  the  mantissa  which  is  for  F okay. Now this  is  what  is  called  an  IEEE



standard, there is a standardised way of storing this, you know you can make other choices

but this is the standard that people have agreed to on how to take 64 bits and store floating

point numbers okay.
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So let us look at double precision, double precision is standard precision used for real number

data, so if you use Matlab this is the default, in other cases let us say C, C++, etc. you have

two options, there is something called float and there is something called double precision.

Once again for most scientific computations we tend to use double precision to be as accurate

as possible, you will find this within GPOs also single precision versus double precision ok.

So remember that for 64-bit we had already seen the 1, 11, 52 split, this was for the sign bit,

this is for exponent again signed exponent remember the exponent by itself can have signs

okay and this is for the mantissa okay which was F.

Once again, since there are only limited boxes for storing the exponent, there is once again a

maximum as well as a minimum positive number that can be represented ok, remember we

have now 11 bits for the signed exponent so we have to remove one bit for the sign and you

will get 2 power 10 is 1024, so you will have from 1023 to - 1022 that is the range within

which you can represent the exponents, remember we are only talking about exponents in this

particular video.

So the largest number that you can represent is let us say I have 52 digits here, so I take

1.1111 this is in binary and I can go to 2 power 1024 that is the maximum you can represent

within double precision 64-bit okay. You go above this using double precision, any computer



that tries to use double precision will either give NAN which is called not a number or it will

give INF which is infinity, so depending on what the compiler is like.

Similarly, you have a smallest number; this is once again in the smallest positive number, just

above 0 what is the smallest number you can get? 1.000 into 2 to the power - 1022, so this is

approximately 2.2 into 10 to the power -308 okay, so this seems like a very wide range but

sometimes you can actually go beyond this very easily.

So I have flashed on the screen a simple example from Matlab, Matlab has a variable called

Real max that tells you what the maximum number is, you can see this number here ok,

approximately 1.8 into 10 to the power 308, this is the maximum number that Matlab can

represent. Similarly, I have a minimum number which is approximately 2.2 into 10 to the

power – 308, so this is from Matlab.
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So just like range, you have a slightly different idea called precision, so let us 1st start with an

example ok. So let us say I have square root 2 and once again I am writing this in Matlab, you

will see some set of digits okay, you will see a standard set of numbers thrown here and let

me add a certain amount of error, a small number to it okay, so this number here is 10 power -

14, I am adding this here, what you will see between here which is the original and this which

is the case with the error, you will see all digits are the same except for this digit which was 0

here it became 1 here because I added 10 power – 14 ok.

So now let us say if I added instead of 10 power -14, suppose I add a 10 power -16, what is it

that we would expect? So since this was 10 power -14, 10 power -16 is this so suppose I add



10 to the power -16, this 5 should actually turn to a 6 right, that is what we would expect so

let  us  see  what  happens.  So  suppose  I  have  10  power  -16,  I  add  it  to  square  root  2,

surprisingly enough the 16th digit stays the same okay. Why did this happen? We can now

look at another example, so let us say A is 1, B is - 1, this error once again I will call it error

is 10 power -16. So suppose I do A + B + error, it gives me the right thing because A + B is 0,

0 + error is 10 power -16.

But suppose I change the order that B + error instead of that I write error + B, we know that

addition is you know you have distribution, you have associativity, commutativity, all those

properties are there in this case, commutation between B + error and error + B, it should give

you the same result but it gives you 0 ok which also seems to be happening here instead of

adding error it is actually adding 0. Now why does this happen? The reason is, notice in both

these cases even the mantissa, not just the exponent, even though the exponent allows you to

go till 10 power -308, the mantissa is also limited.

The mantissa is limited up to 52 bits okay so the mantissa remember is 1 point something, the

number of boxes I have to store here into total power e, E we saw in the previous slide now

we are looking at this portion okay, what happens here. So double precision now is now given

by 2 to the power -52 okay so that is the minimum that you can represent which turns out to

be  approximately  2.2  into  10  to  the  power  -16.  So  any  number  below this  will  simply

disappear so just to give you an example, now suppose you have a calculator and it has let us

say it is a very bad calculator it has 3 digit only that it can represent on the screen so 0.00,

now suppose I give you the number 0.001, there is no space for it to store it.

To give you another example, suppose I have 1.00 + 0.001, what will happen is I take 1.00, it

has used up my 3 digits and if I give 0.001, this is out of range what it will do is it will simply

give me 1.00, this cannot come down at all ok. Now how does that affect this? Notice that

when I do A + B, A + B is already 0 so this is the order in which the machine will do the

algorithm, it will do the addition, A + B is 0 + error it has enough space ok it has 16 digits for

you to be seeing 10 to the power - 16, however when I do A + error + B, something similar

happens, I have 1.000 16 digits + 0.0001 no place to add it, so it basically sees this as A +

error as simply 1 and B is - 1 which is why it gives 0 ok.

So if you go to Matlab once again, the smallest number the restriction that is given by the

mantissa is called Machine Epsilon okay. So if you simply put EPS in Matlab you will get

this value as you can see it in approximately 2.22 into 10 to the power -16 okay, so this is the



smallest  number  that  the  machine  can  represent  in  terms  of  floating  point  additions  and

subtractions okay.
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Now we come, because of the combination of these 2, because of the combination of the

range and the precision, the main thing once again main takeaway is that there are smallest

and biggest numbers that the machine can accurately add and subtract okay. Now you have 2

types of errors, so an underflow error is what happens in case numbers near 0 are rounded off

to 0 ok, so this is the same kind of example that we saw last time, you had 10 to the power

-16 when you add it to square root 2 nothing really happens here so effectively 10 to the

power -16 is being rounded off to 0 okay so you are not getting any addition here.

So here is a simple figure to represent this so let us say this is the max positive number that

you can represent and this is the mean positive number, this is the negative limit, when I call

it negative max what I obviously mean is maximum in terms of absolute value. So whenever

you are kind of caught between these 2 limits okay so let us say -10 to the power -16 and 10

to the power -16, it is called underflow error, in some sense you can see this is going below

the least count of the machine okay so just like our scale has a least count most scales like 1

MM below that you cannot measure accurately so similarly, below 10 power -16 for double

precision you will have trouble okay so if we have numbers going below that and you do not

account for them in terms of the exponent and this Separately you are going to have trouble.

Another thing that can happen in terms of underflow is you might have a divide by 0 error

okay, so even though your denominator is not really 0 but if it goes below your machine



Epsilon or you know even your minimum 10 power -308, you can actually have divide by 0

error, it can occur in many different ways ok. Overflow happens when you actually go above

the maximum limit okay, so let us see an example, so let us say you have a simple expression,

we will see that this is a special case of something called soft max as we move into the neural

network portion, but let us say you have a simple function E power X 1 by E power X 1 + E

power X okay.

Now let us say X 1 = X, in such a case it simply give you half okay. Since X 1 = X you

simply have to E power X 1 by E power X 1 + E power X, so this is obviously half. So let us

try this in Matlab, let us say I take a vector, this vector now is 5000 and 5000 these are just 2

numbers, X 1 = 5000, X 2 = 5000 and I tried this expression, I do E power X 1 by E power X

1 + E power X 2, I get not a number. Now why is that because E power 5000 has exceeded

your maximum possible?

So even though the calculation is badly simple you can do it by hand this is what I meant in

the initial side of this video which is that there are certain things that you can do by hands

very easily but the machine being dumb and being doing sequential operations will simply do

E power 500 first and it will say well I cannot store it so this is not a number. It turns out that

there are ways of tricking the machine into doing the right thing okay so I will just show one

example here, so instead of doing your calculations in terms of X, we subtract out okay so Z

is X - maximum of X okay, or Z I is X I - over all I X I ok. So if you subtract that thing out it

turns out that this function does not change because you are simply multiplying by E power -

max X on the numerator and the denominator.

Now if I write it that way and I do E power Z 1 by E power Z 1+ Z 2, I get back the right

result ok. So the point is, if you simply wrote this in your code in your program, if you are

lucky nothing would happen, if you are unlucky you might get not a number even though you

might be confused about where this not a number came from. So the fact that the machine has

a maximum and minimum can cause surprising errors okay, you might not have a formula

problem, you might not  have a compilation problem but  you could have a overflow and

underflow problem because you have not accounted for the way numbers are registered. In

fact, Open AI one of the companies that works on AI is now trying to exploit the fact that

there is finite precision in order to come up with some machine learning algorithms so that is

well beyond the scope of this course but I just wanted to point that out ok.
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Now it turns out that the Ariane 5 disaster which I started this video which was also due to a

overflow problem okay. So remember that it was all fine in the beginning and the internal

enquiry  board,  the  report  is  actually  available  online,  I  have  put  a  reference  to  that

somewhere later here ok, so since it is a French system this I am going to call it SRI, it is

actually inertial reference system so the inertial reference system tells you you know which

way the rocket is pointing very-very roughly, so it  it had a variable just  like we had the

variable in the previous slide, it had a variable called BH which is actually used to determine

the orientation of the rocket, is it pointing up or is it pointing down, etc and this orientation

was represented by a floating point variable, a real number okay.

Now this variable was stored in a 64-bit floating point operation okay, but due to several

internal reasons part of the reason being that the previous one Ariane 4 used some 16-bit

integers so what it had to do was it had to turn this BH from a 64-bit floating point number

into a 16-bit signed integer. Now this was not any problem for the previous version, I have

this is a mistake, this should be Ariane 4 so the previous version of this launch the vehicle

was Ariane 4, it was not a problem because all the numbers for the orientation were well

within orientation speed, etc, were well within the limits of a 16-bit integer. 

However, after 37 seconds okay it basically reached overflow okay so some number within

the calculation actually went beyond the 16-bit limit, so 16-bit non-signed is 65,000, signed is

32,000 so in either case this number was exceeded due to the vast acceleration that was there

in Ariane 5 in comparison to Ariane 4. So some numbers were exceeded and you can see now



because of that it essentially got confused so instead of going straight up, the orientation was

miss read, it actually turned and then the self-destruct mechanism to cover okay. So in the

words of the report,  so the report says the internal inertial reference system software was

cause due to the conversion from 64-bit to 16-bit signed integer value ok so as I said here this

had a value greater then what would be represented so this is classic overflow.

So the overflow caused the Ariane 5 disaster, this is to tell you that though in the example that

I gave it seem like extreme examples, it can actually have very-very real-life effects okay, so

similar problems have happened in other cases during Gulf war, etc.  So the fact that the

machine is representing numbers in a finite precision have to be sometimes accounted for

okay,  so  if  you  are  lucky  it  will  almost  never  happen  but  if  you  have  a  completely

unexplainable phenomena happening to you where everything seems to work on paper and it

seems to track maybe sometimes it could be an underflow or overflow error, thank you.
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So the last topic in this video is that of condition number okay, so the fact that you have

limited precision which is what we have been looking at in the previous slides can have many

unexpected results, some of them you have already saw. So let us take a simple case, we are

simply summing up s or this number 0.0001 and we are assuming it up 10,000 times okay, so

what would you expect? 0.0001 multiplied by 10,000 should be one okay. If you actually

execute this program you will find that it is not quite 1, notice that there is some error in the

last 2 places.



Now why does this happen? This is because precision has affects that propagates okay, what

do I mean by that? Remember we are adding 0.0001, this is 10 power -4, this does not have

an exact representation in binary, it has a repeating decimal representation in binary so that

the last digit when it gets chopped off have an actual effect okay. So in that case as you add

this problem in 10 power -4 in the 16 digit many-many times the effect actually starts from

your end starts leaking upwards towards the left okay. So this effect of additive effect of

precision can be particularly bad okay, if you have multiple calculations so I will show you

one example.

Let us say you are solving a system of linear equations okay, so let us give you an example,

so this is the system A, let us say this is the matrix A, 1, 2, 2 and 4.0000 there is a 1 okay

sitting somewhere in A ok. So let us say my X is this; 1 and -1 fairly simple example, suppose

I define d = K times X, this of course means that X = A inverse B so if I do, X is A inverse B,

I  should  recover  X,  I  do  not  quite  recover  X  you  can  see  that  instead  of  1  the  affect

propagated  a  little  about  by  5  digits.  Similarly, instead  of  getting  -  1  I  got  some  error

propagation  ok  however,  something  even  more  serious  can  happen  okay  now  because

typically you solve X as A inverse B, let us say I introduce an error in B ok.

Now instead of B being this suppose I added 0 .01 okay or subtracted 0.01, so you can see

that now between this and this I have made a small difference, small change in B so B goes to

B + Delta B or B 1 is B + Delta B. Now the question is if I change B to B + Delta B, A

remains the same, what is the change in X? That is if my number remembers since I am doing

is  finite  precision  arithmetic  you  saw  earlier  that  some  numbers  might  not  be  exactly

represented okay. So if I make a small change in a number instead of storing 1, I restore

1.00001 how much of a change will it make while solving linear systems of equations? Okay,

so when you do this if I do X 1 is A inverse B 1, what I would expect is only a small change

in X since I have made only a small change in B but you can see this is a huge change okay.

Now from being 1 - 1 it has actually turned into 10 power + 8, the sign has changed -10

power 8 and 1 into 10 power 8. So just a small change of 0.01 in B has caused the change of

10 power 8 in X so this is quite worrying, so this is why we look at what is the nature of this

matrix A ok. So just like when you have division by numbers, so suppose I have Y = A

divided by X and if X is very-very small then small changes in A can cause large changes in

Y similarly, if A is close to singular, a small change in B can actually be magnified by A okay.



So this is measured by something called the condition number, condition number is defined

as norm of A remember you can go back to our norm videos, norm of A is some measure of A

multiplied by norm of A inverse is given as condition number. For symmetric matrices there

is an easy way of measuring this condition number okay witches you find out the ratio the

maximum ratio of eigenvalues, which is find out the maximum eigenvalue in magnitude and

divide by the minimum eigenvalue magnitude and that tells you roughly how much your

answer is going to be banking side.

So for example,  we can see that  2 decimal  places were increased okay, so this  this was

increased to 10 power 8 which means there is an increase in 10 decimal places so basically

are magnifying an error by a factor of 10 power 10 and if you look at the condition number of

this matrix just to clarify this. So if you see condition number this is 10 power 11 and it tells

you very roughly this is not very precise, it tells you very roughly that your answers are going

to be magnified by a factor of 10 power 11 that is the worst-case scenario and we are getting

close to the worst-case scenario here ok.

So in general if you have a high condition number, this means you have a poorly conditioned

matrix  and  in  certain  software  for  example,  Matlab  will  tell  you,  you  will  have  an  ill

condition matrix. Ill conditioned means the condition number is really high and any small

errors may be magnified very-very largely okay.

So in this video, just a recapitulation we looked at a few ideas, a few implications of the fact

that your numbers are not exactly represented as you might think that there is a finite amount

of precision and that finite amount of precision has a minimum limit and maximum limit and

sometimes  this  imprecision  can  multiply  upon  themselves  and  lead  to  large  really  poor

effects, thank you.


