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Welcome back, in this final application for this week we will be looking at something which

is different from all the three examples that we saw before, this is the solution of differential

equations using neural networks. So as you know in almost all of engineering and science

most of us encounter differential equations in one form or the other. Now these differential

equations can either be ODEs ordinary differential equations or PDEs.

Now here is the question can neural networks be actually used to solve ODEs and PDEs?

Now unlike the other three applications I will not you know make a separate video for this



just  to  describe  the  problem and then  ask  you to  think  about  it  because  this  is  actually

honestly it is a very very clever idea and it is unlikely that one would think of it on one its

own.  In  fact  it  will  look  very  very  different  from almost  everything  else  that  we  have

discussed in  this  course because  you will  not  clearly  see a  training,  set  a  testing  set,  or

validation set, etc so please do remember this as I go over this example.

The idea behind this example goes back to a set of papers by Lagaris et al, this is late 90s,

early 2000s if you just put Lagaris neural networks you should find these publications. The

application that I will be discussing right now is by a set of researchers from (())(1:52) et al,

as you will see I will show you the paper shortly and this has just been published last year, so

this is extremely recent. The reason for including this A of course is ODEs and PDEs affect

us  completely  within  engineering  and  science,  B  this  is  very  different  from  the  other

applications that we have seen so far in fact this is not a surrogate model, okay.

So remember in  the CFB video I  had shown you how actually  differential  equations  are

discretized or using the finite difference method we kind of make an approximate equation.

Now in this case we are not doing that you are using an entirely different method, you are

posing every ODE or PDE as convert this into an optimization problem and you will see this

extremely  clever  way  of  doing  this,  okay.  Like  I  said  the  original  idea  was  by  these

researchers and I would you know request you to look at it in case you are interested in this

field I do think that this is going to get very important and before I describe the problem I

would like you to I would like to talk a little bit about what the importance is.

So remember that when we were using finite difference method or whatever method that we

had used to generate the CFD solutions this was still you know in the usual way. Now in this

case  maybe  using  neural  networks  you  can  automatize  the  whole  thing  and  the  neural

network can both solve as well as learn from the solution, so this is moving towards full

automation of solving differential equations using neural networks that is first you solve it

using neural networks and then you make a surrogate neural network for this original neural

network this can look a little bit confusing but I do think that this is going to be slowly it will

start  seeping  in  into  the  mainstream of  a  lot  of  CAE solvers,  so  that  is  the  reason  for

discussing this.

So let us take a very simple differential equation. So let us say I have the differential equation

d square T dx square in fact let me change this variable to something else, let us call it d

square u dx square let us say a du dx equal to b. Suppose you wish to solve this, you will also



be given two boundary conditions without which you cannot solve this it is not a well posed

problem.

So let us say u 0 equals u 0 and let us say this x lies between 0 and 1 and you have two

boundary  conditions.  Now you  can  do this  in  multiple  ways  of  course  you can  do  this

analytically, okay this equation is solvable analytically you would have seen this the second

order linear differential equation or you can do this numerically using the kind of method that

I discussed.
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Now there is  a third method that  uses neural networks it  is  a clever  method which is as

follows. We assume that u is some neural network that takes in excess input and gives you as

output, just to make this clear diagrammatically the neural network will look like this x this is

the input of course typically we have a bias unit and then something happens here this is the

neural network it could be in case you are getting unclear we can simply assume it is a single

hidden layer and after all this you get u as output.

Now why is it possible? Regardless of which differential equation it is we know from the

universal approximation theorem that I can always approximate the solution of u arbitrarily

closely by a neural network, okay so because that is possible I can always assume that u is

some neural network of x, okay. Now how does that help us? It helps us because suppose I

postulate,  so suppose I decide you know just like we did with the you know theta BMX

example I take x let us say I put in 10 neural network or 10 neurons and here is u, okay.



Whenever we do this we are actually writing a full functional form for u, how is that so? Let

me take a simple example let us say x is there and for now I am going to forget the bias unit,

let us say there is a hidden neuron A, let us say this is my simple model and then I have u,

okay. So what this says is a 1 is of course sigmoid of some w, x and you is let us say this is a

linear layer and this is sigmoid in it and u is some other w 2 times sigmoid of w 1 x.

Now suppose I want du dx I can actually calculate this analytically I can write this as w 2

sigmoid prime w 1 x times w 1. Similarly you can calculate d square u dx square etc that is

all derivatives this is the key point all derivatives of u with respect to the input x can be

found. Now you might think that this is possible only because I had a single hidden neuron,

what  if  I  had  10 hidden neurons  or  worse  still  what  if  I  had  multiple  layers  of  hidden

neurons? 

Okay, even if you have multiple layers of hidden neurons through backprop you can always

find out d of the output with respect to d of the input just like we did d of the loss function

with respect to the weights, you can similarly find out using the same backprop idea this is

called automatic differentiation, so same idea you use output with respect to input in fact

tensorflow has inbuilt functions that do this, okay I will show you the function I will show it

to you from the paper you know how they actually did it.
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So the point is this the moment you give a neural network we can find if u is a given neural

network of x, we can find u prime of x which is du dx, u double prime of x, etc okay. Now

this makes things easy for us, why? Because now instead of saying I am solving this equation

I  will  pose  the  problem  as  follows  d  square  u  dx  square  let  us  call  since  this  is  an

approximation we will call u hat just like we did y and y hat, so the original is u, the neural

network predicts u hat, so what u hat do we want? We want u hat to satisfy del square d

square u hat dx square plus a du hat dx minus b equal to 0, but obviously it is not going to be

exactly 0, so what do I do?

I square it and say minimize, okay. So this is an extremely clever posing of the problem,

instead of saying I solve d square u dx square plus a du hat dx minus b equal to 0, I say

minimize this and obviously the actual minimum will be only for the exact solution because

that would be 0. Now what you will get in practice of course is something a little bit closer to

0, but it will not be exactly 0 because our neural network will in general not approximate this

you know not not get the exact solution, okay.

Now this tells you that this is the cost function that you have to minimize and the moment

you put in the neural network it can for a given w let us say you initialize with some w’s let

us say w 1 w 2 in the example that I gave, you put that in calculate this from the neural

network because w 1 and w 2 are given you can actually  do forwardprop calculate  this,

calculate  this,  calculate  this  try  and  minimize,  do  gradient  descent  this  is  our  new cost

function.



But if you have been paying attention so far you will notice that this is not sufficient because

we have this condition also, what do we do about this? This will just satisfy the ODE but it

will not satisfy the boundary conditions, turns out that is straightforward also, all you need to

do is add that also to the cost, how do you add it? You say u hat of 0 remember if I give 0 as

input in this neural network it will find out a u hat minus u 0 which is supposed to be the

exact solution plus u hat 1 minus u 1 square, so this total thing all put together is our loss

function.

Please think about this, this is an extremely clever posing of the problem so that differential

equation and the boundary conditions have all  been put together as a single optimization

problem, so the ODE has now been converted to an optimization problem and after this it is

simply a solution, okay so how will you solve it? You try various values of x that is let us say

you have 0, you have 1, now as it is posed for each x, so you will put x equal to let us say 0.1

run this that will give you a residual or that will give you a loss, 0.2 that will give you a loss,

so on and so forth.

So let us say we put 10 points and say add these 10 points I will calculate how much this is

and I will try to minimize that is it there is no training set really if you wish to you can call

this the training set that is any arbitrary x point, but this is not supervised in any way because

I am not giving you a label, all I am telling you is this is the function to be minimized I can

automatically find out the values of this function there, this differential equations residual

there add it together and try to minimize it, okay so this is the formulation of the problem we

will  see  you can  do this  obviously  for  PDEs,  ODEs anything this  is  just  a  fantastically

universal method of solution and I will just show you (())(14:35) et al who are the authors of

this  paper, the solutions  that  they have found out  I  will  show you those for a  couple of

problems, so let us see those.
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Okay, so here is the link to the paper, it is an archive well it is now been published in journal

of computational physics I think this year only 2019, but you can search for this they call this

physics informed deep learning or physics informed neural networks PINN as they call it, it is

physics informed because unlike all the previous cases that we saw remember when we were

doing  the  CFD  solution  computational  fluid  dynamics  solution  of  a  car  etc  I  had  no

knowledge about the physics, only the training set  had knowledge about the physics, my

deployment was simply a CNN it took it as an image.

Here the neural network is trying to impose the differential  equation,  so that is why it is

physics informed the differential equation obviously comes from physics, okay. So this is the

paper I would highly recommend that you read it, it is extremely well written, it is very very

well written, very clear paper, they have their code put up on github, the links for their code

are  actually  here  and the  code  actually  works  as  advertised  of  course  there  is  a  jupiter

notebook you can just open it and run it I will show you some outputs from their paper, but I

would highly recommend that you go back to the original paper and take a look at it, the

archive link is given just in case some of you do not have access to JCP they have actually

very kindly put up their original paper on archive also.

Okay, so here is the equation that they have tried to solve in the paper, this is of course a

partial differential equation, this equation is known as Burgers equation, okay you will see u t

plus uu x minus u xx this is what is called the Viscous of Burgers equation.



(Refer Slide Time: 16:48) 

Now unlike simple ODS you have to give a little bit more these okay so this has both x as

well as time so what happens is at some initial time t equal to 0, you know what the function

looks like, okay. So in this case they have said that at time t equal to 0 my function looks like

sine x, the question is what does it look like at a later time? So this is called marching you

start from t equal to 0 and you slowly move forward in time and they want the solution from t

equal to 0 to t equal to 1, okay.

The postulate is as follows u of x comma t is a neural network that takes x and t as input and

u as output, so x, t, neural network u if I remember correctly they have tried various number

of layers and various number of neurons for this problem they have if I remember correctly (9



20 layers) no I think it is 9 layers with 20 neurons each, so please do refer to the paper I

might be wrong on this number, okay.

So the boundary conditions they have given this is what is called the initial condition apart

from that you will have to say that as you move forward in time this is X remember as you

move forward in time what happens at the boundaries okay so what they have said is at the

boundary the boundaries are fixed at 0 so X goes from minus 1 to 1 and both the boundaries

are always fixed at 0 and we want to see what the flow solution evolves like physically we

have some idea but I am not going to discuss this because very few people watching this

video would actually have directly any physical knowledge of the equation, okay.

Now going back to the original idea if I pose it this way then my loss function is as follows I

will say minimize u t which is now a neural network with respect to t remember it takes x and

t as input I can always find the derivative of u with respect to t using backprop, similarly u

with respect to x backprop and suppose I want u xx I do backprop once, backprop once more

okay when I say backprop, backprop is a slight abuse of notation it is actually what is called

auto grad or automatic differentiation but it is it works very very similar to how our backprop

works, okay.

So u t plus uu x let me call this coefficient Mu because it is just a constant minus Mu times u

xx this has to be 0 but instead I will square it and say of course I will assume this is u hat now

the other condition is when I said t equal to 0 and x is x this function should become minus

sine Pi x again u hat might not satisfy it, so I will say u hat u x plus Sin Pi x square. Similarly

I have one more condition here u at t minus 1 should be 0, u at t 1 should also be 0, so all

these added together will give me my loss function.

So every guess that you have for the weights automatically guesses some connection between

x and u and when you differentiate that and add these conditions you want to minimize the

total loss of that which gives you gradient descent for the weight, okay so very very clever

sort of method of implementing it that is basically what they have written in their paper this

section is right from there instead of calling it u hat they have called this f is the residual that

is  what  remains when you do this  calculation if  you want  just  to be consistent  with our

notation you can put it as u hat, okay.

They have actually given a Python code snippet in their paper but they actually have given

their full code also online, so this is actually a good problem to start with actually some of



you  might  find  it  very  interesting  to  start  with  this  in  case  you  have  ever  work  with

differential equations, the code is extremely well written very very well written, very clear so

that is one other reason that I would like to recommend it, okay.

(Refer Slide Time: 22:14) 

So here is just some sections that they have the definition of how they have defined the neural

network and also how they have found out the gradient, so you see here this here is del u del

t,  this  is  del  u  del  x  and  this  is  a  gradient  of  a  gradient  they  have  found  out  this  is

automatically available within tensorflow, okay.
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So once you do that here are the solutions, here is the contour of u, okay so here you see here

is where they have given the initial condition these are boundary conditions here minus 1 to 1

and apart from this remember the ODE example that I gave you will have to actually take lots

of points between these they call collocation points these are the points where you want to

make sure that the differential equation is satisfied.

Now one other  point  of  detail  you want to  make sure that  you take mean loss,  okay so

obviously if  you have lots  and lots  of  point  on the inside and only a  few points  on the

boundary you will get a lot  of loss from inside the domain and only very little  from the

boundary in order to avoid that what they have done is to actually take mean of these points,

mean of these points, mean of loss of these points separately and once you do that it is a little

bit balanced there are since still  some questions left for example people in my group are

actually trying to find out there are small problems that still remain within this PINN and we

are trying to handle that within my group, but apart from that it is a very well written code

and very intelligent scheme okay.
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So once you do that you see here the solution notice here that blue is the exact solution which

is obtained from the kind of finite difference method that I told you actually in this case we

even know the  analytical  solution  kind  of  okay and here  is  the  prediction  this  performs

extremely well the code that they have given performs extremely well it turns out that finite

difference  actually  will  have some trouble  for  portions  of  this  code  pin tends  to  do this

extremely well without any trouble at all. So this is a very very impressive performance they

have  actually  gone  on  to  do  some  solutions  of  Navier  Stoke's  some  inverse  problems

unfortunately we did not have time to discuss that, that is a very big use of neural networks

that you can put it to to in order to do inverse problems.
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Now  apart  from  this  they  have  also  looked  at  Schrodinger  equation  so  within  physics

Schrodinger equation solutions are required within quantum mechanics so this is a solution of

a Schrodinger equation again this was splitted to real and complex part, imaginary part etc

again this is an initial value problem x t very similar you can see once again that the exact

solution and the predicted solution are extremely good.

So in summary this is a very novel application of neural networks one should say it does not

really have a clear training set, testing set no clear supervision of data at all, not clear it is not

there at all there is no supervision really required you just give the differential equation and

the loss term is figured out from there rather than from a labelled y hat, all you do is make

sure that your u hat satisfies the differential equation in a least square sense I expect that the

applications of this will grow with time, I do know several groups in the world are actually

working on this  and hopefully  we will  see good developments  with an even commercial

software using this kind of idea in the future.

So what we have done in the past four videos is four different applications, one is sort of a

vanilla  very very simple neural  network application,  two very modern CNN applications

within CAE computer-aided engineering and the last one which I expect to grow more and

more in the future actually the last three applications I expect to grow more and more in the

future.

Now that being said we did not do several applications in this course obviously due to paucity

of time and also the kind of medium that we are using we can do different things if people are

here in person and if you had good computational resources.
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One important thing that I talked about in the last video is something called Conv-LSTM it is

just to change from here. So Conv-LSTM Conv-LSTM is just sort of a image-based RNN,

one of the problems we had given in the exercises was you know with a scan if you have

multiple images and you have a video instead of a simple static image, how can you do RNN

with that?

So one way is to take an original image, you know the final fully connected layer is actually

small and this can go into an RNN but this is called a CNN-LSTM, okay a Conv-LSTM is

slightly different wherever you had products such as you know remember Wh + U x you

actually change it to a convolution, once again the basic idea is the same you have a sequence

of images one of the first applications within our field for Conv-LSTM Conv-LSTM was

when we when in weather prediction this is 2015 the basic idea was you use a sequence of

radar images which kind of with which you can kind of predict the amount of monsoon and

try and predict how you know this radar image will look like in the future, this is supposed to

help in monsoon prediction, weather prediction, etc.

I would encourage you to look at this these terms Conv-LSTM and put weather prediction

and you will find some good links there, the results are still preliminary I know that Indian

Institute  of Tropical  Meteorology it  is also called IITM in Pune they are also trying this

several institutes within India are trying it and of course worldwide people have been now

trying to incorporate  CNNs, LSTMs in order to make predictive forecasts  about weather,

rainfall etc.



Often you will find CNN-LSTMs or other convolutional LSTMs being used in sort of trying

to predict the next frame within a video but that is not of great interest to us within let us say

engineering, engineering we are more interested in you have sequence of images and you

want to what happens next in terms of practical things like rainfall, etc.

Now the (())(29:47) for the type of applications that that are there for all the techniques that

we have discussed so far I will talk briefly about this in the next video, but if within this

course unfortunately we had time for only this I would highly encourage you to look at all the

papers that I refer to and see the references written those papers and also see who has referred

to those papers later  on in  order to get  a very very wide bunch of applications,  weather

prediction especially in the earth sciences I just recently went to a conference and saw the

vast number of the large amount of work which is being done in this area, okay. So that is it

for the applications for this week, I will summarize what all we have done in the course so far

in the next video, thank you.


