
Machine Learning For Engineering and Science Application
Professor Dr. Balaji Srinivasan

Department of Mechanical Engineering
Indian Institute of Technology, Madras

Application 1 Solution
(Refer Slide Time: 00:13)

Welcome back when I set up a problem I describe the simple problem of fin heat transfer this is

typically a simple extension coming from a base and we wanted to find out given some data

given some historical data of the dependence of theta on theta b, m and x how we generally set a

function this is sort of a trivial task it is close to the task that we took up in the initial weeks of

this course.

(Refer Slide Time: 00:47)

So I showed you the actual data also, so this had a thousand data points and you had a variation

of theta be M and X and the output here even was theta now of course the simplest structure

when you have such heterogeneous data by heterogeneous data I mean that it is not all theta B it

is not all M and it is not all X you actually have three different physical quantities one is one

physical quantity is temperature another physical parameters and the third is location.

(Refer Slide Time: 01:24)

And you want to combine this three and you want to get theta as out the obvious structure to use

here is the very simple artificial neural network now I am going to do something given the

simplicity of the problem actually this is probably the best thing to try when you have some such

simple problem engineering practice over the last several year show that simply try one hidden

layer we have not any end and example.

So far I am going to show you this as a very simple example just use one hidden layer and see

how well it does only if it does not do well should you asked add more complex structure

especially when you are dealing with ANN’s, so if I have this as a hidden layer we will also do

something like change the number of neurons middle, so let us say a few neuron here this is the

input layer the hidden layer and this of course the output so we will keep some such structure and

try to see how well it fits this thousand data points.

So we are going to try that now I am going to use MATLAB for this case I know that throughout

the course people who have been asking for python it is actually fairly straight forward to do this

python but the MATLAB implementation especially simple artificial neural network is very-very

powerful I would very strongly recommended especially if you are going engineering practice

this works extremely well of course it is not the hard to program this within python also within

either tensor flow or crus are whatever it is that you are using currently there is another reason

for me to use MATLAB.

It has a very nice graphical input to it has very nice GUI the interface is very nice also I have

found surprising during the running of the score itself that it can do several thing that are actually

quite hard to with a tenser flow we are not going to see examples of that today but it can do

several things it also have a few functionality that tensor flow does not have because tensor flow

is not bother about a single heat and layer any way they have built at specifically deep matter not

for CHALU networks of this for that.

I have shown so that my lesson that I would like to point about here is in case you have access to

MATLAB the biggest problem with MATLAB of course is that is not open source and it is not

free but to the extent that we have access to it during the duration of this course please you try it

you will find it surprisingly good at many task even for deep learning task I have found

surprisingly good performance with MALTAB it is actually quite impressive.

(Refer Slide Time: 04:34)

So here is what we are going to do I have called my file fin historical data and let X, so let us run

our course very simply I have called my code create network we are here and I have written out

the data in as well as we format basically this rates our input data the as well as so the excel file

that I showed you now the data is right we would like to label the inputs and outputs separately

first three label the first three columns remember were the inputs and then the next column was

the output.

So this is not a very complex code I need not have actually shown this at all now this thing here

NN start actually starts the neural networks GUI you can do it without the GUI but for

demonstration specially in a video I find it particularly convenient to do this this is one other

reason with that we are trying to show this within MATLB rather than python, so suppose we

start so you will see this, this is actually an old tool box MATLAB now has a deep learning tool

box that us far many ore thing much like tensor flow or anything else, so now we are going to

use the fitting app within this so please see this.

(Refer Slide Time: 06:06)

So the general structure that is being used with the fitting app is of course you have one input

hidden layer and directly the output layer it is a sitting layer.

(Refer Slide Time: 06:19)

Now it ask for inputs in fact if somebody is interested you should probably make an interface of

this sort for tensor flow or something that all just so that beginners can actually easily get into a

problem, so I am going to give X as input Y is output.

(Refer Slide Time: 06:41)

Now please see here within MATLAB they have a default set of values for splitting the data as

training, testing and validation all of you would have seen this during the earlier weeks whenever

you have data you use training data in order to get your parameters validation data in order to get

your some of your hyper parameter and the testing data in order to finally report how good or

bad were results were.

(Refer Slide Time: 07:11)

So now it is asking for the number of hidden neurons now what I am going to do this you might

seen on the screen is that the current number of hidden neurons this is very first layer are set to

be ten we will leave it as it is we will leave it to be ten hidden neurons so currently we have

inputs three hidden ten and the output layer is just one output, so I will leave it we will change it

a little bit later just to see what the effect is.

(Refer Slide Time: 07:41)

Now here is one other place for a single hidden layer that MATLAB been sower it ask for a

training algorithm now remember all we have been using, so far is gradient descent one or the

other version of gradient descent if you check the options here there is something called

Bayesian regularization which we have not done nor have we done scaled conjugate gradient nor

have we done Levenberg Marquardt, Levenberg Marquardt algorithm works very well.

If you have like single layer and your loss function is a least square lost function which is

basically what we want to use for our problem I have all this predicted values what would be a

lost function it would be a least square lost function it is a regression problem in not a

classification problem if you try gradient descent on the current problem A you will find that you

will have to of course normalize the input which we have not done you might not this that all the

columns that we had as input and output were not normalize.

When we did the linear regression problems to might remember that when we did not normalize

we had lots of trouble with gradient descent whether we use gradient descent stochastic gradient

descent add an etcetera typically they will be much slower this problem then Levenberg

Marquardt for this problem, so I will just move the training here and you will see that within the

a few second it has actually fully trained this simple network.

If you write a code within python my suspicion is that gradient descent will actually work a little

bit slower than what MATLAB even for this, so you notice a few things that have been reported

remember the statistical measure called R which shows you the amount of correlation.

(Refer Slide Time: 09:32)

Let me just show the correlation here this is normalize correlation you will see that a the output

is matching really really well if it is a straight line it basically means that your output are

matching very well that is your predicted output versus the actual output is matching very very

well.

(Refer Slide Time: 09:52)

If you plot the error histogram you will see that there is the error here is of the scale of point zero

zero nine etcetera etcetera you will see that a lot of view in fact find Gaussian this is a very nice

example of central limit theorem and what we have been talking about even the error in the

prediction of the neural networks are arranged very nicely as if they were from Gaussian if time

permits I will show you how to use an inverse problem using idea the error would be distributed

as a Gaussian probably later this week you can combine neural network with (())(10:30) Dr.

Ganapati discuss the previous also very nicely if time permit I will do that.

(Refer Slide Time: 10:39)

So this is just as an example that the error the answer was not exact but you do have a very nice

error plot error is quite is low, so error you will see is around to three into to ten to power minus

six now whenever you trained you look for a few things remember our over fitting and

regularization and discussion you will see that training error is around three into ten the power

minus six this is the main square error you will also see that the validation and the testing error

are round about the same of the same order of magnitude.

Then that is the case we can kind of assume that we do not have too much variance problem and

we do not have over fitting etcetera so we are reasonably ok we will also see that the correlation

is extremely high which means ten neurons for this problem is actually pretty good and ten

neurons is nothing as you know from CNN cases so with three inputs and one outputs you can

actually fit very well just using ten neurons, now suppose we want to change our number of

neurons and we bring it down to two remember.

That the main square error in the previous case was of the order ten power minus six and if I go

here and I trained again you will see that the main square error actually gone up even though the

correlation is still pretty good what you notice now is the errors have gone up in magnitude if we

plot the error histogram you will see that it has come down by a couple of decimal place so

reducing the number of neuron even though have only few weights right now it is still looks a

little bit a Gaussian but you will see that the corresponding errors have actually gone up.

So if we come here and let me go back and instead of two suppose I use twenty and I trained this

network you will see that the errors extremely low now it has gone to the order of ten to the

power minus seven luckily still the training and the testing errors are approximately of the same

size so is the validation so you know that we have not yet over fit the problem, so this is a simple

example of neural network if you actually want to use this tool box let me show you an example

here.

(Refer Slide Time: 13:13)

You can save this network as net, so you will notice here so this is a very simple example of what

can be done with neural networks we had some data set with thousand points but we did not

know the physics we will pretend that we will did not know the physics but we had a lot of

historical data we saw that we could easily fit it using a neural network now this has several uses

as I said it can be use as a surrogate it can be used for inverse problem etcetera in the next video

we will see a little bit of a more complex problem, thank you.

