
Foundations to Computer System Design
Professor V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 12.4
Understand the Operating System - Compiler Interactions

(Refer Slide Time: 00:17) 

Welcome to module 12.4 and now we will start understanding the OS interface in a great

detail, now we know we have written the compiler now you know how to translate a jack file

to a VM file, we know how to translate a VM file to a ASM and then assemble ASM to this

and then…so we are quite now familiar with all these things right, so now let us see before

we proceed further we will now understand what is the OS interface for a given program. 

(Refer Slide Time: 0:57) 





We have seen so many programs right, so if you actually look at some of the programs that

you would like to experiment here let us go to the tools directory here, let us take one such

example, so I am just taking the example of one of the programs jack programs here, so let us

say… Now if you look at this jack program this is called array.test this is available in the

projects 12 directory so this is available in your nand to tetris project 12 array test main.jack

right. Once you look at this program there are lot of routines that this is basically taking for

example array.new similarly array.new here then some disposal teams of c and b where a, b

and c are arrays so this is equal enter array.despose et cetera. 

So essentially that means these array functions as you see here or methods that you are seeing

here, we are actually basically using something that is available with the operating system

okay, so if I say array.new, so this is something that is available with the operating system, so

the array all this array functions we assume somebody else’s is giving us and who is giving us

the operating system is giving us. Similarly if you go back to C programming language you

will have print abs scan abs all these things, these are given by the operating system that is

why you include STDIO.H and inside STDIO.H you actually see these functions there, so

now to go back to where we are every program basically  has 2 components,  component

number 1 is it has whatever your writing it as something that the original user code and there

are calls to operating systems routines. 

The same thing is what we are seeing here, so we are now having a lot of OS functionalities

that are available and they basically use these functionalities these are provided to us as VM

files, so you write say main.jack as I have shown, you compiled this you get the .vm files.

These .vm files will have certain calls for keyword or math functions or arrays and these are

already provided to you by the operating system okay. Now that you find these files, so these

files are available in that tool/OS directory so in nand to tetris if you have project directory

and of course you would have the tool directory. 

So  in  the  tools.OS directory  these  files  are  there,  so  I  will  just  show you  the  tools.OS

directory as we see here, so if you just go back to this, this is the OS directory. Now if you

just see array, now you see array.new here and then you say array.dispose here, so 2 functions

are part of this array.new and array.dispose similarly if you go to math for example math.init

and then you have several other functions so large large files so you have several functions

inside math okay. So if you just scan through this entire thing you will find many functions

here right for example math.max right so like that. 



(Refer Slide Time: 5:37) 

 



Similarly your keyboard, so keyboard.init, keyboard.readcare, keyboard.keypressed okay all

these  things  are  there.  Now  you  are  free  to  use  these  as  a  part  of  your  jack  file  and

automatically when your compiler will basically call these functions right it will just say call

of this function, so when you go back to the way… Let us see this example when you look at

this is the array. This is the jack file that you are seeing if you see the vm file for that if you

see the same vm file for this you will see that this is the vm file and this has basically called

array.new. 

So you are saying array.new here call array.new one and where is this array.new? This is there

in array.vm file right so there are many routines that you can write as a part of your jack code

in the compiler will automatically take those code from these vm files this is how you are

writing  your  printer,  scanner  statements  in  C and finally  you are not  coding print  f  and

scanner, somebody else is coding printf and scanner, how is that? The operating system and

so that is why you include STDIO.H right and in the STDIO.H these prototypes for all this

printer, scanner are there and that is how they are. So somewhere we need to basically link

your jack file with these vm files, so that is what we called as (())(7:28) okay.

(Refer Slide Time: 7:32) 

Now we will go ahead and see something, before we go into linking we also need at the

compiler stage we also need to understand certain stuffs for example let us take this jack

command,  let  length is  equal  to keyboard.readInt  how many numbers? Right so this  will

basically land us up with call keyboard.readInt with one parameter, what is this parameter?

This is going to be string constant, so this parameter will be a memory location say 1000, so

this will be a memory location which is 500 for example, on 500 what you will see, you will



see a link to 1000, so from 1000 onwards 1000, 1001 like this we will have H, O, W, blank,

M like that, so this will basically give this call keyboard.readInt, the parameter that should be

before you call keyboard.readInt the parameter that should be at the top of the stack should be

500 sorry the parameter that you see on the top of the string should be 1000. 

So what it will do the moment this call keyboard.readInt is called with the parameter 1 on the

top of the stack it will be 1000, so immediately this will go to 1000 and start reading that

string till it finds a null, so this will lead the string and then that will be process a parameter,

so  the  keyboard.readInt  is  going  to  read  this  string,  so  what  is  given  as  an  input  to

keyboard.readInt is the starting address of the string okay, so in the real compiler if you see

this would have been a string constant and how do you process this spring constant? 

We just create string length number of locations using string.new right and then we append

that will return a 1 null string, so that will return string.new would have returned 1000 with

some 20 phases let us say this is some 18 characters, 10 characters or 12 characters, so 12

characters here and it will be initialise to null but (())(10:14) research pace for 12 characters.

Now you start appending character by character H then O then W and all, so this particular

string constant is actually a term, this term will basically return you on the top of this pack

this  1000  and  that  1000  is  given  as  an  input  argument  to  this  and  that  is  how  this

keyboard.readInt will start reading it.

(Refer Slide Time: 10:50) 



So just to give you a very quick grasps of it this is what we did for string constant as you

remember earlier, so this is the string how many numbers in our case here and so you push

the constant string length and you call string.new.1, so let us say this is 20, so 20 locations are

created for a string say starting at 1000 20 locations are created and initialised to null that 1st

string.new and what you do for i is equal to 0, i less than STRLEN you keep on pushing the

character consent to this and you start appending the character, so to this H will get upended,

so you are calling this string.appendChar also, so we are using this string functions. Where

are these string functions? 

These string functions are available in string.vm this is the operating system file. This is

available in string.vm as you can see here okay. Now in compilation one of the things that

you should always keep in mind is that if you create some memory before the end of the



program that memory should be released back otherwise you will land up with what we call

as the memory leak. Please remember this term whenever you study compilers or operating

system especially compilers you may get a much more deeper understanding of memory leak,

so what is memory leak? If I basically create some memory for my program, in this case I

have created a memory of say 20 locations for storing this how many numbers, this should be

released back to operating system. 

(Refer Slide Time: 12:58) 



So what does string.new do basically if you go back to string.new here in the code, so this is

on the OS let us go to string and let us see string.new, it actually allocates call memory alloc,

so it  actually allocates  that many memory for storing the string,  so it  actually causes the

operating system. String itself is an opening system where it calls the memory management

part of the opening system and says give me some memory locations, so the operating system

per se will maintain something called the list of freely available memory from that it will take

some memory and give it this memory.alloc will give it to string.new saying this is the total

number of locations I have from this you take this much and you use this and this is from the

starting address. 

So  it  is  the  responsibility  of  the  program to  return  it  back to  the  memory because  later

somebody else can use that memory or you yourself can use it at a later point of time, so any

memory that you request from the operating system has to be disposed of right so in this case,

so that is something that you need to understand, so whenever in this case when you say

keyboard.readInt you are creating some memory locations and giving it to keyboard.readInt.

Now please understand who is going to return back to the memory? 

So that is where you need to understand the routines in very great details, now if you see that

this keyboard.readInt basically reads this string and after reading this entire string it goes on

displays  on  the  screen,  if  you  remember  it  will  say  how  many  numbers  and  then  this

keyboard.readInt  itself  will  dispose  it  off,  so  your  program which  uses  … This  is  your

program let length equal to keyboard.readInt is a statement in your program, your program

creates  that  space  for  that  how  many  numbers  and  it  calls  keyboard.readInt,  the

keyboard.readInt actually disposes the memory right, so if you go back to this keyboard, if



you look at keyboard.readInt okay let us quickly search for that yes so the keyboard.readInt

file if you see that you see that it disposes the string right, so this is how when you call OS

routines you should understand what the OS routines is doing specifically from the memory

handling point of view otherwise what will happen is you will land up with memory leaks. 

Memory leaks is that you have taken the memory and before you finish you have not written

by the memory, so the operating system will not know that the memory is available, so that

memory you do not use it but you not returning it back then unnecessarily this memory will

be hanging without nobody to use it right and that is called memory leak and we have to be

very  careful  not  to  land up with  memory leak  and that  is  one  very  important  aspect  of

compilation that you will study in a full-fledged compiler course but I am just giving you the

thought process of how this can happen right. Now of course after this keyboard.readInt is

completed, it actually reads integers from the keyboard and it will put the integer right on top

of the stack which will be popped onto this variable length, so that this length assignment

gets over, so this is something that you need to understand as a part of this. 

(Refer Slide Time: 16:56) 



 



Okay now what has happened? Now let  us go back, now you have a set of files say for

example Main.jack, Bat.jack, Ball.jack let us say there are 3 jack files we compile all of them

to get each one of them to get Main.vm, Bad.vm, Ball.vm with this. Now substance foremost

these main bat and ball can also use some of the OS routines, if you use the VM emulator that

is available in your tools directly, you go and click on the directory that actually stores this 3

dot vm file it will load all the vm files and it will assume it has inbuilt OS functionalities. The

vm emulator has all the OS functionalities are inbuilt so you need not put it as part of your

vm files,  so  you can  execute  this  and see  whether  your  program is  executing  correctly.

Program execution can be first tested on the VM emulator. 

So as first part of your project 12 you go and see in the project 12 directory you will have

many  such…if  you go back  to  the  project  part  of  your  directory,  so  project  11 of  your

directory  you  see  so  many  files  on  the  project  11  average,  complex  arrays  so  many

directories. Go to each one of these directories compiles all the vm files there, so you compile

main  file  using the compiler, so if  you go to  the complex array  you have Main.jack  so

compile this were to convert to bin again you have Main.jack similarly go to Pong you have

bad ball main pong game compare all the vm files then similarly 7 we will get this and then

we can also see the square again you have Main square game. 

So all this 6 directories the files you can compile basically now use your real emulator first to

check whether they are working correctly right. Now that is the 1st step, so that is what we

want you to do as a part of project 11 right and now that you have finished the compiler now

you can compile all these files and see whether they are actually executing properly on the

vm emulator right so that is something that you need to check up here okay. Now when that is

done, so this is over and now your program is working correctly, now you want to execute it

on the finally where you have to execute it on the hardware simulator. 

So what you do is you put Main.vm, Bat.vm, Ball.vm everything together as a single file and

since they are all using all the VM in the memory take all the VM is in the OS directory into a

single file right for example you will have array.vm, keyboard.vm, math.vm, memory.vm all

these things you put into a single file and then you create one massive executable file and that

is basically called exec.vm that is an executable file, so this is called static (())(20:40). Now

you can compile it using vm to assembly translator it will get translated to assembly then you

can assemble it using assembly to HACK assembler. 



So finally you will get the .hack file which will have the entire program. This is basically

what an…now you will find that for your machine that we have ROM32k. This is where all

your instructions should be stored, if I take all the vm files in the OS directory that itself will

come  to  45K  essentially  this  executable  that  you  are  creating  cannot  execute  on  the

ROM32K, it is in this machine,  the hack machine that you have created this whole thing

cannot execute because it will exceed the size of whatever you have as 32K, so that is the

most important thing that we need to keep in mind right, so now what I have done at the time

of compilation itself I have put all the main, bat, ball and all the vm in the OS directory

together as a single file. 

This is done at the time of compilation not at the time of execution that is why this is called

static linking right. Now by doing this static linking what did we land up, we have landed up

with an executable that will not fit into our hack machine. This is typically what you are

going to face in today’s what we call as Internet of things era, in Internet of things era we are

going to see small embedded systems and these embedded systems are going to have very

less memory, so what we call as memory footprint, the memory footprint of your program

should be small that it fits into small embedded memory right you will have something like

that like 2 kilobytes,  yes 64 kilobyte,  256 kilobytes and you have to put the whole thing

inside this and execute. 

So one of the biggest effort in embedded programing that anyone of you… If you really go

into a challenging problems in embedded programming in the IOTL I hope many of you will

go and you take inspiration from this course I will be extremely happy, so if you basically do

that then one of things that you will really land up there is that you need to start writing code

that will fit into small memory foot prints right, so we will in the next 15 minutes of this

course than is pending we will just go and see how you do such type of writing okay. 

So  even  before  looking  into  it  in  modern  compilers  like  when  you  take  a  full-fledged

compiler course you will learn the dual of the static linking what we call as dynamic linking

right you will learn something call dynamic linking, what is dynamic linking? So when you

compile a program like I have Main.vm, Bat.vm, Ball.vm I will just do a static linking of only

Main, Bat and Ball because they are all part of my code then basically I will link them, I will

assemble them and then I will convert it into hack code, so I will have the machine code for

Main, Bat and Ball right that will be loaded into the memory, so I will have one executable

which have only main bat and ball okay. 



Now  when  this  program is  executing  whenever  it  calls  a  OS  routine  like  array.new  or

whatever the moment it starts calling that will go to the operating system and the operating

system will fetch that array.new function instead of that being belonging to the original code,

the operating system will fetch it into the memory that function alone executed and throw it

back, return it back. So on demand I can link with that function get it executed after that I do

not need it I can throw it back again whenever I need I can bring it so it is not that I can bring

only that function for example if you take string.new already we saw string.new will call

memory.alloc okay. 

So memory.alloc me call sys.error so I bring if I want to execute string.new, first I will bring

string.new I will start executing it in the middle when there is memory.alloc needed I will

bring memory.alloc and execute that and after it finishes I will throw off memory.alloc then I

will  go…so memory.alloc in turn will  ask (())(25:34) sys.error I will  bring sys.error. The

sys.error once this is getting over I will throw it off and then memory.alloc when it gets over,

so on demand I will bring the functions from the storage to the memory and then return it

back, so my memory footprint can essentially remain small, so this is called dynamic linking

because we are linking to the functionalities of the operating system at execution. 

So the dynamic word comes because we are doing it at the time of execution okay but in this

course whatever we have done so far we do not have an operating system of that calibre

which can help us do as dynamic linking. Typically all the IOT devices the small Internet of

things devices that stays on your survey (())(26:31) camera at your house or it stays in the

sense are that is basically measuring temperature in your air conditioning unit or wherever.

Those things cannot afford to have an operating system, so we have to basically write small

sea code like what we are doing, it will be typically like a hack machine, so how do we

basically write code for hack such machines, so this is one case study that we will like to do

now as a part of that remaining 2 modules. Thank you very much. 


