
Foundations to Computer Systems Design
Professor V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 11.6
The Jack Compiler Backend: Code Generation - 4

(Refer Slide Time: 00:16)

Welcome to module 11 point 6, we will do one more module here.

(Refer Slide Time: 00:20)

This is the compileReturnStatement right, so how does the return statement look it will be

returned the keyword return followed by just a semicolon or an expression so the expression

is actually optional here right, you may have the expression or not I have the expression. So

how will you code this returnStatement you first check for the keyword return then if

expression is found the next one is expression then you call compile expression then what

will compile expression to it will the code with code will it will generate the code for the

expression evaluation of the expression and the result of that execution will be on top of

stack.

Now you check for slash expression right then you just say return the only code that you need

to (re) be right here is return right. So when you return if you go back to the original VM

implementation the calling function will take the result from the top of the stack right and that

is essentially, so already this is on top of the stack so the calling function will take the result

from the top of the stack.

So this is how the return basically works but if you do not see an expression then it means

returning nothing (ret) just return right, so you do some action and just return. There the

calling function will always as per the VM implementation the calling function will always

see some result on the top of the stack right, so even if you return nothing there should be

something on the top of the stack because the calling function after you return the calling

function will pop the stack and start processing right.

So for that purpose if you do not see an expression if you do not see an expression if the

expression is found do this part of the code if expression is not found then just push constant

0 and return, right that is all, right. So because every subroutine call in VM is expected to

return a result on top of stack, so just push some constants here, right so that is (())(02:30), so

this is how the return statement works

So these are the two lines of course, so you this is how you code the return statement, so what

I have seen so far is for 11 different routines in this module starting from.

(Refer Slide Time: 02:53)

So let us quickly go to this part for the 11 different modules starting from compileClass.

(Refer Slide Time: 02:55)

compileClassVarDec.

(Refer Slide Time: 02:56)

SubroutineDec.

(Refer Slide Time: 02:57)

ParameterList.

(Refer Slide Time: 02:58)

SubroutineBody.

(Refer Slide Time: 03:00)

VarDec, SubroutineBody again something little more on SubroutineBody.

(Refer Slide Time: 03:07)

Then compileStatements.

(Refer Slide Time: 03:10)

compileLetStatement.

(Refer Slide Time: 03:12)

compileIfStatement.

(Refer Slide Time: 03:13)

WhileStatement and ReturnStatement, so 11 such subroutines we have said what is the

(contin) what should be done there and whatever we have put on green is what should go into

an output file and that will be the dot VM file. So create a, so you take an XML file as an

input and you generate a dot VM file as an output and whatever should go into the that VM

file is basically whatever you are seeing in green plus of course some part which is dedicated

for constructing your symbol tables namely your global class symbol table and your

subroutine symbol table that happens in your class var declaration and your parameter list and

your var declaration.

Three subroutines where who are responsible the classVarDec is responsible for all the class

variables, your parameter list is responsible for all your arguments of your subroutine symbol

table and your VarDec compileVarDec is responsible for your local variables there, right.

(Refer Slide Time: 04:25)

So in the next module that is 12 we are left with only 4 subroutines namely

compileDoStatement, expression, expression list and compileTerm but these are slightly

involved you will, so you have seen maximum of 4 (co) 4 lines of code they involve

involvement here would be a little more number of lines of code that we need to write for this

and so we will finish those 4 in the next step starting of the next module and we will also give

you a demo of running a code from jack to hack so, right, so the entire thing will see from

jack to hack.

So what we are expected to do this is a very defining moment for you, you are writing a

compiler on your own, so do not ditch this effort see and this module is very short and you

have to just code what we have told right so and what we have understood, just keep coding,

so finish the coding of the 11 routines here we will be just left with 4 more routines which we

are going to discuss in the next module and plus of course the main right and you compile

and check for any compilation errors, right I have just oriented it from a C programming

point of view you could have written in C plus plus or Python or whatever but just check

there is an there is no issue there in terms of compiler and you can also check the current

construction of your class symbol table and at least your first (simp) subroutine symbol table.

So we will we may not cross the first subroutine but at least the first subroutine you are

seeing in your class that symbol table you can check whether it is properly constructing you

can print it out at correct position and see who this printing out, so and in project 11 you

actually have a number of programs, right.

(Refer Slide Time: 06:21)

So the you can basically see so if you go to nand2tetris and project 11, so you see a number

of programs average, complex arrays, convert to bin, pong seven, square, so for all these

things you can tokenize it then you can and a parse it to get the xml file and then start running

this code for that and see whether the class symbol table for example if you take this main

you can see whether this, so you will see there is no class variable here but you will see at

least three variables being done here right, so there are three local variables.

So your subroutine your class symbol table should be null that is there should be no entry in

their part your current subroutine table the first sub main has at least three entries, you can

check whether this at least is formed there. So it is your symbol table properly constructed

that much you can see right and that you can do for every jack file that you are seeing but

there are for example pong has four jack files you can do for all the four jack files.

Similarly seven has one of course and then square has three jack files, so you can see for each

of these Jack files so you have to first tokenize then create the XML file and then put your

current code generator and see at least to this stage, so we will again meet in module 12 and

we will take it forward, thank you very much.

