
Foundations To Computer Systems Design
Professor V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 11.3
The Jack Compiler Backend: Code Generation - 1

(Refer Slide Time: 00:16)

Ok, welcome to module 11 point 3, in this we will now start seeing the code generation.

(Refer Slide Time: 00:23)

So what we have seen so far is when we the last time when we started

compileSubroutineBody first it finish the compile varDec then it went to compile statements,

right.

(Refer Slide Time: 00:45)

So what does happens, so we were in compileSubroutineBody, so we have finished of the all

the variable declarations, right and then after we finish compile varDec then we said it has to

do compile statements before it goes to compile statements, this compileSubroutineBody will

do certain functionalities for generating the code. So what are those functionalities we will

see, what the compileSubroutineBody will do.

First thing is, it is needs to done the code it there is a VM code we should say function right,

so function className dot currentSubroutineName local count, as I know the className as

to current className, so the className has to be stored in a global variable I told you earlier

we are going to use this, so this function is a from this className in this class and

currentSubroutineName these are global variables that we already saved.

(Refer Slide Time: 01:49)

By compileClass, compileClass I have shown that initialize a global string currentClassName

and assign the className to this, so that is what we are going to use here, right. So

className dot currentSubroutineName which we have again accounted for and then local

count, this is a total number of local variables there are that. So actually instead of local count

we should say it should reach field count, sorry correct, the local count.

So we need to have this do you see the number of local variables that are there, so go back to

VM implementation whenever you see a function immediately the VM actually creates local

count number of variables, right so the function VM call if you go and repeat it actually uses

the number of local variables. So now you should also understand why I am dumping this

code here? Why are we doing it here? Because, so we need to know the number of local

variables before we output this function, this particular VM this is a VM code, we need to

have the number of local variables and that is why we are doing it after your compileVarDec

is finished, right.

So this is the first thing you generate now, right this is a so when you compile a class the first

code that you will come is function some className of the first subroutine that you see

followed by the number of local variables it has, ok. Now after this if the current subroutine

is constructor right, this also we have noted somewhere here if you very carefully looked at,

right.

(Refer Slide Time: 03:44)

I have, sorry I have asked the saying currentSubroutineType is constructor, function or

method please assign, right so depending on this. So why I need this is done by

compileSubroutineDec and these are all global variables why I need this

currentSubroutineType I need it here, ok. So if the current subroutine is a constructor then I

have to create that object, ok so you dump this code push constant field count, right the

number field count call memory dot alloc 1, so memory dot alloc is an (())(04:26), right.

So I am (ca) this is usually equivalent in the lock that takes only one argument basically this

field count, so what will memory dot alloc do? It will taking one argument and that argument

is field count, so it will create field count number of space, so all the field variables will be

given a space and what will memory dot alloc return you? Memory dot alloc will return you a

pointer it will on the top of the stack you will get a pointer pointing to this memory dot alloc

whatever allocated memory but you pop pointer 0 that means you assign that base address to

this segment pop pointer 0 will make the this segment point to this object, so you are created

an object and you have made the this segment point to that.

So this is what you need to do moment you see that this is a constructor, so this memory dot

alloc is basically used for this. So then if then next if the current subroutine is a method, right

if it is the method then somebody is calling this so this the first 0th argument will be so this

method will be associated with an object, right and the 0th argument will be the pointer to that

object because this method will be using the field variables etcetera of that object, so the 0 th

argument as such we have seen will be the 0 th argument will be the pointer to the object for

which we are executing this particular subroutine.

So what you do is you push argument 0, so that pointer to the object will become a top of

stack and I say pop pointer 0, so the current this segment will be assign to this object. So

when the subroutine is executing whatever field variables we are see those field variables will

be taken from the object that is associated with that we have seen in the previous thing then

this we do after that we see statements, we will saw Call compileStatements and when it is

returns we should see (scla) slash statements and then we check for symbol to this and that is

where coompileSubroutineBody finishes, ok so this is basically the contribution of compile

coompileSubroutineBody to this.

Now I want you to point whenever there is a constructor function, see I have two types of

variables field variables and static variables but I am creating space only for the field

variables here, right because all the statics variables will be in the static segment, right. Now

always, so for the entire application the static variable should be put into the static segment it

will not be part of the object it will be common to a class, right we have already defined.

Now there are multiple jack files that we will compile each will have static variables and then

we now say that this when we are compiling this, this static variable is 0, 1, so for every jack

file I am assigning the index 0, 1, 2 for the static variables into the other. So every class every

jack file will have static variables with index 0, 1, and 2. So how do you resolve this? That is

where you should remember what we have done on the virtual machine.

In the virtual machine whenever I say pop static 0 or something like that immediately a label

is created with the file name dot that index. So if I have j a 1 dot jack and that has two static

variables say s 1, s 2 that will become that will be assign 0 and 1, so that will become a 1 dot

0 will be s 1 and a 1 dot 1 will be s 2. Similarly if I have another j 2 dot jack in which I have

some r 1, r 2 are static, j 1 dot 0 will be r 1 and j 1, sorry j 2 dot 0 will be r 1 and j 2 dot 1 will

be r 2, right.

So this is how the VM takes the static things, right. So the VM the way VM handles static

variables it will make it file independent, so every file can start with 0, 1, 2 the VM will label

it in such a way that these static variables are mapped on to distinct memory locations, they

have given different names and the assembler if you remember will mapped the static

variables on to different locations in the static segment we starts from 16th to 255.

So we need to understand how the VM works for us to start dumping the coding that is why

we say that if you are just an application programmer you do not nothing about anything

below that if you are just a compiler writer and you do not know anything below that then

basically you are losing something. So the basic intention for this course is to give you the

overall picture.

So what I have what I am basically telling you here is that when we are seeing a constructor

we are allocating space only for the field variables there, so and for all the static variable will

be assigned somewhere in the static segment and every file every jack file I compile the static

variable should be assign index 0, 1, 2. So there will be multiple jack files and each one will

have static variables is index 0, 1 and 2.

Now and I will just say push static 0, push static 0 in both cases whenever I want to access

that variable. Now the VM will take care of labeling these static variables of different files in

different manner and since they are labeled differently the static variables there will be

allocated different locations in the memory. So this is these whole burden of handling static

has been carefully push to the virtual machine and that is one basic thing that you need to

understand otherwise this whole thing would have become much more chaotic, ok.

So that is one thing that, so this is also trying to answer the question that if you want to

become a great compiler writer you should also know how the virtual machine works, right.

So this is what subroutine body does and, so then the next thing is that we will go to, so it

will see statements, so and so it will call compile statements.

(Refer Slide Time: 11:12)

So what will compile statements do? Compile statements is zero or more of these

letStatement, ifStatement, whileStatement, doStatement, returnStatement zero or more of

these. So if the compile statements see letStatement it will call compileLetStatement and after

finishing it will look for slash letStatement, if you see ifStatement it will call

compileIfStatement and after compileIfStatement returns back it returns back to

compileStatements it will look for slash ifStatement.

Similarly while, do return and it will be keep doing the same thing above till you do not find

any of these letStatement or ifStatement or whileStatement, doStatement etcetera, right and

that is what compileStatements does. So compileStatements basically takes you to the

corresponding statement routine it does not directly contributes, so I such you do not see a

green line here, it does not directly contribute to the code, right to the code generation.

So this is one part of, so what we will do is for all the fifteen subroutines that we have seen so

far, we will basically start writing the code for them, right so that is what. So we have seen

already we have seen some six of them, so in the remaining lectures of this module and the

subsequent module we will be basically explaining you what is the structure of each of these

subroutine and if you code exactly what we are say ultimately the compiler will come back,

right.

(Refer Slide Time: 12:52)

So now before we wind up his particular module I will just take you here, so this is the

subroutine body, so the subroutine body will first see varDec, right so when you just open this

varDec it is var int i comma j, right then the next varDec would be var string s, the next

varDec is var array a, so all varDec three varDec are over and each of these varDec this

varDec will put i and j as local variable between this as 0 and 1 and this varDec will put s as a

local variable with type string index 2 and this will make a as a a of type array local variable

kind local and 3, ok.

So this is what slash varDec would do after varDec finishes as I told you, you will see

statements and these statements can be you have an ifStatement then you have

returnStatement, so you have an ifStatement and then a returnStatement then statement sent

then, right. So this is how compileStatements work, so you see statements and then you see

ifStatement, returnStatement and then you do not see anything then ultimately you come back

to compileStatements and you should see a slash compileStatements, right.

So in the next lecture we will go on to more of these subroutines and we will finish it. So

what I want you to do is to just take down these slides I have described here, take those notes

and start writing each of these subroutines as we are seeing here and every time you will find

for example and say in these subroutine body check for symbol this one, if you do not find

the symbol so it will be symbol parentheses slash symbol, so that is the it is the something

like this, right.

So symbol parentheses slash symbol, so if you do not find this you write you put an error, this

particular thing is missing, so we were expecting this but this is missing. So that is how, so

importantly one of the important thing in compiler is that when there is an error you should

point back to the programmer saying here is the error, right. So that type of an error resilience

you need to build inside the compiler and that is going to be a very important job for this.

So I want you to start coding and so you can come up to compileStatements at least you can

start populating your symbol table, so we will meet in the next module with more details,

thank you very much.

