
Foundations To Computer Systems Design
Professor V.Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 10.6
The Jack Compiler-Handling Arrays

So welcome to module 10.6 in this module this is the last of the module related to the compiler

theory part we will now see how do you handle arrays in the how do we translate array type of

statements onto the VM code, so that is what we will be seeing as a part of this module.

(Refer Slide Time: 00:41)

So there are two parts of this array one thing is we have to construct an array and then

manipulate this array right so let us see how we are going to construct array and how we are

going to manipulate array.

(Refer Slide Time: 00:59)

For example we have var array arr let arr is equal to array dot new of 5 so what essentially needs

to happen is that arr is say let us say it is a local variable 0 so now arr equal to array dot new 5

should initially the value of arr will be 0 but once you do this array dot new of 5 then this value

of so the compiler should the machine should allocate 5 locations.

Let us say 8054 to 8058 and then update this value of arr by 8058 this is what it is supposed to do

right so now we will understand from the callee perspective and the caller perspective what is

going to happen in this case.

(Refer Slide Time: 01:53)

So there are two virtual memory segments that can be aligned to different RAM first addresses

first let us remind this, this and that right so this now points to 8058 that now points to say 8054

here right so let us say that has the locations 8054, 8055, 8056 so that 0 is that, 0 is 8054 that 1 is

8055that 2 is 8056 similarly let us say this has 8058, 8059.

Now if I want to change this 8058 value I will say pop I put whatever value onto the stack and

pop pointer 0 so suppose I say push 10 and I say pop pointer 0 then this 3 will become 10 and

similarly if I say push 100 and say pop pointer 1 then this 4 will become 100 so I can change the

address to which this and that are pointing namely I can change the content of 3 and content of 4

by popping to pointer 0 and pop pointer 1 respectively this we have seen it is just a recap what

we have done.

(Refer Slide Time: 03:08)

Suppose I have say array of 8056 is 17 say RAM of 8056 what should I do? I always use this that

pointer to manipulate this because this will be always used for pointing to the current object so

that is now will be now used so when I was describing this virtual machine I said this that do not

bother now later I will explain why we are using this and that, now is the instance where I am

going to explain you what is that, this we have already explained now that I am going to explain

now. So when I say RAM of 8056 is equal to 17what I do is push 8056 so 8056 goes into the

stack. Now I say pop pointer 1 so 8056 will go to this location 4 it will adjust now I want push

17 so I am pushing 17 so what will happen?

So somewhere this 17 will get into the top of the stack ok then I say pop that 0 so 8056 17 will

now get stored right so the way I execute RAM of 8056 is equal to 17 is I push 8056 pop pointer

there so now that becomes 8056 now I push 17 onto the stack and say pop that 0 so 17 will be

there. So this is the equivalent VM code for this jack level code which is RAM of 8056 is equal

to 17 right. So now what has happened let me just again explain you once when I say push 8056

somewhere 8056 gets into the stack pop pointer 1 8056 goes and stays now in that. Now 8056 is

this pointer to the start of the that segment that is what it means.

Now I say push 17, 17 goes onto the top of the stack and then say pop that 0 that means 8056

plus 0 which is 8056 gets 17 so essentially I have made RAM of 8056 as 17ok there is small here

this need not be the top of the stack so this arrow basically talks about var 8056. Right so if I say

let arr 2 is equal to 17 so how do I do this? First push arr ARR push 2 add when I say push arr

what am I pushing? I am pushing the base address of arr, when I say add 2 I add 2 to the base

address of arr so that will so that add will now be the address in which I want to store 17.

Suppose arr is stored at 8056 then 8058 is where I need to store 17 arr base address is 8056, 8058

is where I am going to do something so when I say push arr what will go into the stack? 80 sorry

if 8054 let us say arr starts at 8054 if I push arr 8054 goes into that stack then I push 2 then I get

2 goes into the stack now I add then I get 8056 on top of the stack. I pop that to pointer 1 so 8056

goes to that. Now I push 17 and I say pop that 0 so 8056 basically gets 17 right. So this is how I

use the that segment to handle manipulate arrays.

(Refer Slide Time: 07:06)

Now when we do this then there is an issue right let arr expression 1 is equal to expression 2,

suppose I say push arr push expression 1 right what will push expression 1 do? It will basically

expression 1 will evaluate something and that output of compiled expression suppose I do a

compilation of the expression that code will evaluate that expression for example arr of a plus arr

of 5 plus 6 so that will become arr of 11 right so 11 will be there when I add this let us say arr is

8054 starts at 8054 let expression 1 be say 4 so 50 58 will be there. Now when I pop pointer 1

what will happen? That will become 8058.

Now I push expression 2 right so I compile expression 2 so this will give an answer that will be

on the top of the stack so when I compile and execute an expression what I assume is the

expressions output will be on the top of the stack after it completes. Now when I say pop that 0

ofcourse it will go to this 8058 but what will happen is when I am evaluating expression 2 I may

go an change this that see what we have done is array of expression 1 let us say arr of 5 plus 6 so

5 plus 6 is 11 arr starts at 8054, 8065 is where I want to store the evaluated value of expression 2

that 8065 I have stored at that I should have stored it here in that, that is what happens at the end

of this 4 things ok.

But then I am evaluating expression 2 that expression 2 can now go and touch that and if it touch

that 10 this value essentially will get replaced this whole thing will so expression 2 completes

and you get some value when I say pop that 0 that has what? 8065, 8065 will get that value of

that expression provided this expression 2 does not touch that, the expression 2 itself can be

another array expression for example let a of 10 be equal to c of 15 right now that c of will go

and touch that so that so what will happen is this particular code will not work correctly if this

expression 2 touches that ok.

(Refer Slide Time: 10:03)

So for example as I told you let a i equal to b j push a push i add pop pointer 1 push b push j add

pop pointer 1 that is all your pointer 1 is gone.

So if I have array on both sides a i equal to b j then this array this manipulation will not work

right. Now we can give all this in as a of i plus a of j plus a of 3 equal to a j plus 2 you go mad

right so if I give something like so point is when we have this type of an expression for how do

we do this right.

(Refer Slide Time: 10:46)

So this is what we do so push a push i add so this will give me the address in which I have to

store b j right that will be on the top of the stack. So now let us look at this, at the end of this add

what will be on top of the stack? The address in which I have to store b j similarly push b push j

add this will tell you the address of b j pop pointer 1 and push that 0 that means it will get you

the value of b j right.

So that will be on the value of 0, this value of b j I pop it to at temporary location pop temp 0

now what will be on top of the stack? This a i will be on the top of a plus i where I need to store

that value at that I pop pointer 1 then I say push temp 0 then I say pop that 0 right. So this is

some this is the thing that we need to do in general ok. So I will just try and explain this a bit for

you so that you know we have little more clarity on this otherwise going to do so very simple a

of 5 is equal to (a of) b of 8 let me say a is stored at 5000 b is stored at 7000 so essentially means

content of 7008 should move to 5005.

So this is the stack and somewhere this is let us say this is that so let me say this is stack that is

growing now I say push a when I say push a what will happen? 5000 goes into the stack push 5 I

said push i right so 5 so 5 goes into the stack I say add when we say add this will become, this

will become 5005 right now I say 5005 is push b so 7000 pushes push 8, 8 pushes add I get 7008

now I say pop pointer 1, when I say pop pointer 1 essentially that will this will get removed and

basically 7008 will go to the that segment, that is what pop pointer 1.

Now in 7008 let us extend this memory suppose in 7008 we have 15 now I say push that 0 go to

the that segment add 0 to it 7008 whatever value push it back to the stack so stack will now get

15, 15 will now move ok. Now pop temp 0, temp is a segment from 6 array to 15 so there is a

temp segment so somewhere let us say there is a temp segment here so the temp segment this

will now pop so 15 will now go and sit here temp 0, this is temp 0. Now this is the top of the

stack now I say pop pointer 1 so essentially when I say pop pointer 1 again this is temp pop temp

0 then I say again pop pointer 1 ok so when I say pop pointer 1 what will happen?

Now this will go off and this will go to this so 5005 will get onto that ok 5005 will go onto this

now push temp 0 so this 15 will now get pushed onto this push temp 0 now pop that 0, pop that 0

means now this 15 will go now and reside in 5005 so 15 now goes to 5005 so the content of 7008

which was 15 now gets copied right. So this is how we basically work on this particular array

right.

(Refer Slide Time: 16:19)

So in general solution for generating array access code for example let array expression 1 is

equal to expression 2 so what we do is that we push array then we put the VM code for

expression 1 then we add so the VM code for expression 1 will give the value of that expression

1 there on the top of the stack will add so that is the at the end of this what you see at the end of

this add is the which address I need to store the evaluated value of expression 2 that is will be on

the top of the stack.

Now I do VM code for computing expression 2 then that answer I store it in temp 0 now I pop

pointer 1 which will be this address and push the value of temp 0 again back to the stack and pop

it onto that 0 so essentially this gets, so this is the general way of handling let expression is equal

to expression 2 so please note that a of i a of i will work very nicely so if you just code this, this

recursively works very nicely ok.

(Refer Slide Time: 17:32)

So the big picture to conclude is that there is a jack program now we have done project 10 the

current project 11 we have to do that will give you the VM code and that VM code using project

7 and project 8 you will write it into a VM implementation one of this but the same thing we can

write for different other devices different VM code and this will basically taken.

(Refer Slide Time: 18:02)

So this is how the whole thing works and this is the big picture here ok and so we will now go to

module 11 where in the next we will start looking at the project 11 in greater detail.

