
Foundations To Computer Systems Design
Professor V Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 10.3
The Jack Compiler – Handling Expressions

So welcome to module 10.3, we are doing the Jack compiler back-end, so we have seen so far

how to handle variables now we will now see of how to handle expressions.

(Refer Slide Time: 00:38)

Now well  we start  looking at  expressions,  we need to start  looking at  the grammar of how

expressions are evolved at in this case, the expression is basically we have a term followed by an

optional  operator  term  pattern  right,  so  this  is  how  we  define  the  first  grammar  right,  so

expression will have a term followed by an optional, if I put star it can be zero or more repetition

so it can be just term or term of term, a term of term of term and it can go on like that.

And what is it  term, a term can be just an integer constant like 150, 200, it can be a string

constant like double quote something, it can be a keyword constant so what are all the keyword

constants you can see it can be true, false, null or this right the last thing that you see here, true,

false, null are this right, this can be a keyword constant it can be just an identifier right, I, c equal

to I plus J, I is a term right, it could it can be an array expression, a of 10, a of 10 as you see here

right, so a with followed by some expression here, a of 10.



It  can  be  a  subroutine  call  and  the  subroutine  call  will  be  just  a  subroutine  name with  an

expression list or it can be a subroutine name dot sub, it can be a class name dot something or a

var name dot something right, so just a subroutine name with expression means it belongs to the

same class otherwise this belongs to some other class or so that can be this and then of course

there is a subroutine call and then it can be an expression within parentheses or it can be an unary

operator and a term and there are two unary operators, one is minus and another is negative right.

And what is an expression list, it will be expression, expression multiple times right and there

can be subroutines without any expression also right, so these are all the things so let us give

some examples of term, 5 is a term, x is a term, x plus 5 is actually a term right, x plus 5 is also a

term right, it is term of term, x is a term, 5 is a term, plus is an operator, x plus 5 is a expression

sorry, x plus 5 is an expression.

Now if we look at subroutine called Math, Math is a class name, if you look at this Math, dot

abs, abs is a subroutine name absolute value, then there is an expression list right, this expression

list  here  what  you  see  here  is  an  expression  list,  so  the  expression  list  here  has  only  one

expression and that name is x plus 5 so expression list has one expression and nothing more and

that is x plus 5.

No I could have another term would be var name, var name is arr and then followed by this

square brackets ending with the square brackets and within that I could have an expression and

what  is  that  expression here,  the expression can be a term and what  is  a  term,  term can in

addition be a subroutine call and the subroutine call in addition can derive to this class name dot

subroutine name, Math dot abs of x plus 5.

So this arr of this is actually a term where in r is, this r of this arr is var name followed by the

square and ending with a square parenthesis and my Math dot abs and then var name and this

Math dot abs of x plus y is an expression because this expression has one term and that term in

turn is a subroutine call and that subroutine call in turn is a class name dot subroutine name math

dot abs followed by an expression list, the expression list is an expression which has a term

followed by op, followed by a term and that term is var name identifier x, this op is plus as you

see here up can be anything here, op is plus and the next term is a integer constant which is 5

okay.



Now we can also have a subroutine call who is a subroutine name followed by an expression list

followed by this parentheses, small parentheses and n parentheses as you see here, so this is a

subroutine  call  and  followed  by  an  expression  list,  the  expression  list  has  one  expression

followed by, expression list can have an expression followed by many expressions, in this case I

have only one expression that expression essentially has one term to start with and that term

essentially is a bad name followed by a parenthesis.

So arr is the word name followed by parenthesis, followed by a square bracket ending with a

square  bracket  and  inside  that  there  is  an  expression  and  that  new  expression  is  we  have

subroutine call because that new expression has a term that term essentially has a subroutine

called, the term actually has a subroutine call and that subroutine call has a class name which is

Math followed by a subroutine name dot abs and again there is an expression list that expression

list has one expression and that expression has a term which is x and the term is an identifier var

name with x and then op which is operand with operator with plus and another term which is an

integer constant which is 5 right.

So this is the way we need to start interpreting expressions, so the grammar per se will capture

all these expressions in this manner right, so try and understand this in this perspective.

(Refer Slide Time: 07:25)

Now I want to do a into b plus c right, the infix is a into b plus c but we will not do the prefix

here,  prefixes I put the operand before, I am doing something called postfix which we have



already seen on expression evaluation when we are doing the virtual machine, so what we do

here we just put a b c plus star, so this means essentially push a, push b, push c then when you

encounter a plus what you do, you do b plus c you just take the top two elements in the stack and

add them and store the results so at the end after I see the plus what will be on the stack would be

a followed by B plus c.

b plus c on the top and a in the bottom then I have star which will basically give you a into b plus

c, so this is the stack oriented stuff that we need to do, so given an expression of any path, we

need to convert it into this postfix notation and that is going to become extremely important, so

remember when we are handling expressions we have to handle postfix notation.

(Refer Slide Time: 08:46)

So essentially if I have x plus g of 2 into 2, y, minus z minus 5, g is a function call x and 5

variables so this is how we generate this parse tree, we will just have this x plus g of 2, y, is at

minus, so x plus g of 2, y, minus z minus 5 right, so when I want to evaluate this I put push x

then I say push 2, push y, push z then negate z minus then called g, so when I am calling a

function already I assume that all the arguments for that function would be already in the stack

which is anyway in the stack now (())(09:40) and I say call g and then what we say is once call g

completes, the result of this g of 2, y, minus z will be on the stack.

So when I say call g, at the end of this call g, I know that this 2 y z are all going to be removed

and you know and the result 2 y z which are, 2 y minus z which are part of the top of the stack



are removed and only X will be on the stack and at after call g finishes the result of g of 2, y,

minus z will be on the stack.

(Refer Slide Time: 10:20)

Okay if this is the source code x plus g of 2, y, minus z, that star 5 then this is how this will be

push x, push 2, push y, push z, negate, it will become minus z, then call g, then the answer for

that will be available now I push 5 and do star, so whatever the result of this g 2, y, z gets

multiplied with 5 and that (())(10:49) will be on the top, now I do plus that gets into x plus this so

this is how we actually start generating code for expressions.

So whatever I have described here is you want, we want an infix so this is how the code writing

we need to do if the expression is a number n we need to push n, if the expression is a variable

pushed at variable whatever whether it is a field or static or local or variable, if the expression is

of the form exp one op exp two, first you finish writing the code for exp one then for exp 2 and

output op, so this basically takes care of your post fix notation and if the expression is of the

form op x exp then actually code right exp and then output op okay.

So this will, so code write exp will make the answer of that expression on the top of the stack

and if I say op that whatever unary operation will happen on the top, is exp is function of exp 1

to exp 2 to etc. we write code rate of exp 1 we do code write of exp 2 and then at the output we

just say call if right so what we essentially mean is that push all the arguments of the function f

and then do a call f okay.



So this is how we start writing code and the most important thing that we need to keep up here is

about this which will take care of here postfix notation and why do we need for fixed notation

because then only I can implement it directly on the stack, so when I am writing a code for

expression evaluation that  should,  since the VM is a stack based virtual  machine everything

would be mapped down to stack.

(Refer Slide Time: 12:58)

So X is equal to a plus b minus c this was the source and this is the XML code you wanted and

from this XML code we need to get this particular pseudo code okay so this is the, so what

happened in project 10 was this x is equal to a plus b plus c got converted to this and in the case

of project, this current project we need to pass this XML code and get this (())(13:29)



(Refer Slide Time: 13:33)

And in many languages lot of time we are given this operator priority suppose I say a plus b into

c, b and c are multiplied first and then a right so but in the case of our Jack language we give a

left-to-right  priority  so  the  Jack  language  definitions  (())(13:57)  that  the  expression  in

parentheses are evaluated first however right, so the main thing is that so when we are trying to

do this when I say a plus b into c, we will be doing a plus b followed the whole thing into c that

is what we mean by left-to-right priority but suppose I want to do a plus b into c then put b into c

in a bracket and that will be useful for us right.

If you do not put it in the bracket then it will be treated as I say a plus b into c, if I want a plus b

into c then put b into c in the bracket okay.



(Refer Slide Time: 14:39)

So this is all about handling expressions and when we actually construct the compiler we will get

lot more insight of how do we go about handling the VM code for expressions right, now we will

in the next module we will start looking at handling the flow of control, thank you.


