
Foundations to Computer Systems Design
Professor V Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 10.2
The Jack Compiler – Handling Variables

Welcome to module 10.2, we are in the Jack compiler, we are discussing the backend here and in

this particular module we will tell you the intricacies of handling the variables which are part of

this Jack compilation, so what is it that the compiler has to do when it encounters a variable and

as I mentioned to you there are variable sort of four types, it can be the class variables namely

field and static and it can also be the, for every subroutine you have variables which can be

argument and local variables.

So how are we to handle these variables and that is what we will quickly look at in module 10.2

so though this is specific to Jack, this is the way even in a very high complex programming

language like C, C++, C sharp, etc. this is how these variables are going to be handled so this

gives you a broad introduction to how compilers in general handle variables and specifically we

will be educating you through the example of the Jack programming language.

(Refer Slide Time: 01:36)

So we know start with, so I am using the slides from the website, chapter 11, so right so what are

the variables, now you see that we have a class named foo and there are three field variables a, b,

c, there are two static variables x and y, we explained in the previous module what is the

difference between a field variable and a static variable, now there is some method, in this there

are two variables a1 and a2 which are basically arguments, there are v1, v2 and v3 which are

local variables.

Now look at one expression that let c is equal to a2 plus x minus v3 like this is very interesting c

is a field variable, a2 is an argument, x is a static variable, v3 is a local variable so that statement

c equal to a2 plus x minus v3 involves all type of variables that are present in the Jack language

right, now so when we are compiling these variables should be stored somewhere so that we

access it right.

So what will happen here is when foo as a class is created, there will be a location, there will be

three locations allocated for foo, the field variables of foo namely a, b and c and in the static

memory so if you look at the memory map, location 16 to 255 are to be allocated for static

variables, so this x and y will be mapped on to some part of that static so when you are

compiling, you know fix that a, b and c are going to be allocated some memory and the starting

address of this a, b, c when you are inside class right there is something called the this pointer,

that this pointer will point to where the variables of that class are stored.

So when you are compiling the code you ensure that whenever I am executing something related

to a class right, something related to an object right, object of a class now that object would have

been created, for that object, for all the field variables we will have some locations created and

those field variables will be in some consecutive locations right and the starting address of where

that object is stored is that starting address is in that this segment right, there is a this that

segment that we have seen that this segment actually stores the starting address of where the

variables, values of the variables are stored in the memory for the current object.

So keeping that in mind similarly the argument will tell you when I am executing method bar as

you see here the argument a1 will be stored, there an segment, argument segment we have

already seen a1 will be stored in the zeroth location, a2 will be stored in the first location and

there is a local segment in which v1 will be stored in the 0, 1 and 2 now this will point to some

memory location say thousand, in 1000 a will be stored 1001 b will be stored 1002 c will be

stored.

Now given this type of an info and similarly static without loss of generality let us say 0x is

stored 1y stored, now with that let us see what we need to do here so I want to do c equal to a2

plus v minus x3, so now we go into our expression evaluation, in the virtual machine which is a

stack based virtual machine I hope you remember the virtual machine that you have done, what

do you do, we push a2, push x push v3 sub when I do this sub, x gets subtracted by v3, so x

minus v3 is computed and that will be on the top of the stack.

So what will be in this stack, a2 and x minus v3 will be on top of the stack now I say add when

we say add, x minus v3 gets added to a2 so you get no and what will be on top of the stack after

add, a2 plus x minus v3, now pop c, so a2 plus x minus v3 gets popped down to c, so this is how

c equal to a2 plus x minus v3 is basically executed, now this needs to get substituted so when the

program is executing where will be a2, a2 will be in the argument stack, argument segment and

that location 1.

Argument section location 0 is a1, location 1 is a2 right, so a2 will be pushed argument 1, push

a2 is equivalent to push argument 1, push x is equivalent to push static 0 without loss of

generality assume that x is stored at 0, pushed static 0, x can be stored anywhere and that index

will be known and then push v3, V3 is a local variable so in the local segment v1 is 0, v2 stored

at 1, v3 stored at 2. so push local 2 then sub and add are like this and c, c is a field variable and

so where will c be stored, that this segment will point to a address, from that address the second

location 0 to address there if this is pointing to say 2500, 2500 a will be stored 2501 b will be

stored 2502 c will be stored.

So pop this 2 right so this essential statement, this vm code, this is the actual high-level jack code

that gets changed into this vm code sudo level but finally this is the very important, so somehow

we have to now translate this c equal to a2 plus x minus v3 onto this code, the last one here and

for doing that this mapping of a2 to argument 1, x to static 0, v3 to local 2, c to this 2, this

mapping needs to be present right and that is something which is very very important.

So the challenge in handling variables is to actually see how to arrive at this mapping between

what is given as a code here and what is finally decided from that, so what we will be discussing

in the next few minutes here how are we going to do this mapping, so let us see how are we

going to do.

(Refer Slide Time: 08:25)

This is going to be very straightforward right so when I look at a variable as such I have

explained you in the previous module 10.1 itself every variable has a name let us say x, x has a

name which is x, then there is a type associated with it, in this case it is int but there are in

general in the Jack language we could have int, we could have char, we could have boolean or it

can be another class name also for example you take other the type associated with this is a point

right, so it is a class name also.

So int, char, boolean and identifier if you look at the grammar these are all the different type

right now kind for example I already told you there are 4 kinds, so field for example x it is kind

this field, point count it is kind of static, other, if you look at this other it is kind this argument

right and dy if you ask its kind is local, so I have field static local argument and then index,

where is it stored in that particular segment, in argument segment, 0, 1, 2 so I need an index and

of course there is a scope, all the field variables have within that class and all the subroutine

variables has local and argument within that particular subroutine right.

And the static variable of course has across all instantiations of the class so these are the things,

and this is at least what we do is we create something called a symbol table where in every

variable that you are encountering when you are basically doing this compilation of a class right

we actually create a symbol table, we create two symbol tables, one for this class, another for the

subroutine right, the symbol table, why we need to do this distinguishing thing is that the symbol

table for a method is existing only when I am compiling that method but the symbol table I am

doing for the class you exist while I am compiling all the methods.

So I need to have one when I am compiling so every Jack file will have one class and while

compiling that class I create one symbol table for the class variables and that will exist till that

entire compilation is over and for every subroutine that we are encountering we will create a

symbol table for the subroutine for exclusively for each sub routine and that subroutine symbol

table will go off as soon as we finish compiling that subroutine.

So every fresh subroutine I encounter whether it is method, whether it is constructor, whether it

is function, every subroutine I encounter I basically create a subroutine symbol table for each one

of them right, so this is how we go about.

(Refer Slide Time: 11:31)

So this is a symbol table, so I see x y point count so what we do here is we are now creating the

symbol table so this is the class symbol table that you see on the top and this is the you know the

subroutine symbol table for distance alone like and for every subroutine I will create and destroy

it once I finish so what is there in the class sub routine, the class sub routine see, note that there

are three variables x y point count, all the types are int right, all the types are int as you see here

and then the kind the x and y are of kind field while point count is of kind static and then x and y

are going to be in 0 and 1 and point count in the this segment, they are going to be in 0 1 in the

this segment well point count is going to be in the static segment here we have assumed without

loss of generality zero but what will happen in practices when we are compelling an application

it will have several class files, so let us say class file one, class file two, class file three, class file

four so we will compile in some sequence, it can be in any sequence but when I am compiling

classified one that I will encounter some static variable.

So we will allocate say three, there are three static variables so 0 1 2 will be allocated there so

when we are comparing the next class file we start from where we left in the previous so that

there needs to be some sort of a communication between one class file and another class file in

terms of where I am going to store the static variables right so there is a class file called bat, just

say this there are two classes called bat and ball right.

So the bat has some three static variables that will be allocated 0 1 2, when I am compiling ball

when I find another static variable then I should allocate three for it right so in long sense when

you start looking at compiler you will be studying something called linking, linking is nothing

but trying to establish some communications between different files which eventually make one

executable right, you would have worked on dot C file say there will be several dot C files right

which will eventually make one executable, for example even in your Hello World there is some

stdio dot H file right you are using printf as a function, you do not know what printf is right, so

you just use it and who knows what printf is, the stdio dot H file actually knows printf.

So when you are compiling you take your Hello World code and the compiler also takes the stdio

code where the printf routine is there and links it right there is a linking that is happening so what

are the different aspects of linking, linking is trying to bring, link several executables together

write several files together so this is one very simple example of linking right so that you can

keep in mind.

So here without lot of generality we have said that point count is zero but in principle the point

count can be three or four depending on how many other class files or a Jack files you have

compiled for this particular application before compiling this particular file right, now coming to

the next one now we are talking of point when we are compiling this method so there is one

argument which is other it is of type point right, it is a type is a class here and the name of that is,

name of the variables other and it is at 1.

Similarly dx and dy are local variables, dx dy int they are of kind local and they are in 0 1 now

what is this this right already I told you that whenever a method is executing there is a need for

accessing the field variables like what we have seen in this case right, there is a need for

accessing a field variable in this case I am accessing C, so that means as a method I need to

know where that variable C is stored so I need to know where that this is basically stored okay so

that is why whenever we are calling a particular method we also pass the reference, that is where

that particular object is stored that this will point to where x and y are stored, this is a you know

we have already seen this is a particular 16-bit variable now in this this I store 1500 that means x

is stored at 1500, where it is stored at? 1501, so but I need to know where this is when I am

compelling.

So by default whenever I call a method that this is stored as argument 0 and everything else will

we stored from 1 2 3 so here it has only one argument so there are two or three arguments then it

will have argument one argument two argument three, so one of the thing that we need to

understand here is that we need the variable this as a part of your argument because whenever

this method is going to access a field variable of that instantiation of the object it needs to know

where that field variable stored, of course static it will know but it needs know where the field

variable is right, so this is very very important. So keep this in mind when we are constructing

the symbol tables.

(Refer Slide Time: 17:31)

Now that we have constructed the symbol table right now it is very easy for us to now go and

start, it is very easy for us to go and start compiling these course right so to just sum up one class

level symbol table is created with the top one as you see here and then that is used for the entire

when start compiling from this to the end of this class here but then there is a symbol, there is

another symbol table that is created here which is for every method so when a method is entering

that symbol table comes into existence when the method is completed that symbol table is a

erased right.

So we will have something called a current symbol table and for subroutine, current subroutine

symbol table but we will have one class symbol table which will exist for the entire duration of

the compilation of this particular class file or Jack file okay.

(Refer Slide Time: 18:33)

Now every time that you see say let y equal to y plus dy this is a source code in this case, now

immediately what we do we push y then push dy and then add and pop it back to y, that is what

we do right y equal to y plus dy how do you execute it on the stack based virtual machine, you

first to push y, this y, then you then push dy then you add right, push y push dy and then you add

then again you pop it to y back right.

 Now what is y, y immediately you go to, this symbol table is created before you come here so let

us class him so before I start let us say let y equal to dy is somewhere here after this okay now by

the time I start executing this the class symbol table will be created and for the current method

that symbol table will also be created okay for the current method right so now so this will be

available so the moment I see y, push y, where is why I go back it is field one, then I say push dy,

dy is local one, add and pop y, y is again this one. So by using this symbol table I can translate

this push y, push dy add and pop y 2, push this one push local one add and pop this y, so this is

the very simple things right.

(Refer Slide Time: 20:17)

So this basically we are now talking of the life cycle, the life cycle of a field variable is for the

entire class right and so if it is a field variable every object instantiation from the start to the end

this scope of this variable is there when you are compiling the class from the start to the end that

the life cycle of the field and static variables are there, the case of local variables and arguments

it is for within that particular method or constructor or function right so the life cycle is within

that right.

(Refer Slide Time: 21:02)

Now you know in complex programming languages like C right you have, you can declare

variables anywhere here we have now restricted to declaring variables at the beginning of the

class and here also we are restricted to beginning within the subroutine we have restricted to

declaring all the variables at the beginning right but this variable declaration can happen

anywhere, it is insane right so I could have then within, so the scope if you remember what you

have done in C, the scope of a variable is within the block in which it is described.

So for example if I say for int I equal to 0, I less than something only within that for loop that I

will be I declaration is valid, outside it, it will not be valid so but so the moment I have this type

of nested scoping right then that basically I will have multi levels of symbol table and then we

have to use that, in general in a complex programming language we land up with these type of

multi levels of symbol table but in Jack we are not doing it we are no restricting one symbol

table for class and one current symbol table for the current subroutine that is being executed

right.

(Refer Slide Time: 22:26)

So in the will now proceed on to the next module where we will be talking about how to handle

expressions, I hope you understood this, I like to see more postings coming on the website, we

have seen some people are asking doubts but there are not that many doubts that we anticipated,

hope either we are very clear which we are happy at least you post saying whatever you have

taught is clear right will be we just want to ensure that you are with us in the course right, we

will now go on to module 10.3, thank you.

