
Foundations To Computer Systems Design
Professor V Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 10.1
The Jack Compiler – Back-end Introduction

So welcome to module 10.1 and we are now starting the construction of the compiler, the back

end of the compiler, so what we did in module 9 and also project 10 was that we did the

compiler, the front end of the compiler wherein we took a program, we converted the parts of

that program, we actually split the part of the program or we bisected the part of the program into

tokens and then we did an analysis of this token to basically construct another XML type of file

in which we checked whether the tokens adhere to the syntax of the Jack grammar.

So now that we now have an analysis of that token which we can call as an intermediate

representation, we will use that analyzed file to basically construct the compiled code which will

be the VM file, there is a virtual, which will be in the language of the virtual machine so we had

a Jack file, we tokenized it, split it into tokens then we analyzed it, form that XML intermediate

representation.

Now what we are going to do the last part is take that XML version and convert it into an virtual

machine code, remember earlier we have written at interpreter which will take the virtual

machine code and then basically give you the assembly code, we have already written an

assembler which will essentially give you the machine language and we have already developed

a simulated hardware on which you can execute this machine language statements.

So this will complete the entire stack so we are in the last part of this so the module 10, I will

teach you the theory of how to construct this compiler, module 11 and 12 will go deep dive and

construct the compiler at the end of module 12 you will have a compiler which you can basically

use to compile the code into a virtual machine code and then you use the softwares that you have

generated in the past to interpret that virtual machine to an assembly, again use your assembler

and make it into that hack language, machine instruction and then that machine instruction you

give it to your constructed hardware and run your program and see it is working correctly.

So we are very close to whatever we termed as the objective of this course and I hope you have

completed your project 10, if you have not please put that effort and do that project 10 so that

you know project 11 which we are going to do after this particular module, it is very crucial that

you have understood project 10, worked on that project 10 and you have the output of the project

10 right.

(Refer Slide Time: 03:16)

So let us start with project 11, the module 10 right here so we know start with the back end or the

code generation, now I am using the slides that are part of the website nand to tetris, so in the

nand tetris website, go to projects and there you can download this particular slide, just for your

convenience I will also show how to do that.

(Refer Slide Time: 03:47)

You can go to go to projects if you click on projects you get this and go to this project 11 and

click on this you know teacher board icon and you will get this chapter 11 like that you could

have got for all the other projects also, you can use it this as a guiding material for your projects

in general as I mentioned earlier, now let us go and I am going to use this slide so you can also

download the slides and keep it for your reference right.

(Refer Slide Time: 04:30)

So yes so we have finished the tokenizer, we have finished the parser as a part of your previous

assignment now what we are going to discuss now is a code generator which will take the output

of the parser which is the XML representation and give you a virtual machine code right so this

is what we are going to do and once we complete this the token I said plus parser plus code

generator together forms a full-scale compiler for the Jack language and so you would have

written a complete compiler taking a grammar in mind and you have constructed a compiler and

that I believe is going to be a very very interesting value addition to your knowledge reporter.

(Refer Slide Time: 05:18)

Now let us just quickly go through what is the Jack language, so Jack language any application

you are developing on the Jack language will be a collection of Jack files, each Jack files will

have a class, the class there is a name for the class for example there is a, this main is the name

of this class, similarly point is the name of this class so each Jack file will have exactly one class

and the name of that Jack file will be main dot Jack, here it will be point dot Jack.

So you will have several Jack files and you just compile all of them together link them together

and you construct an application which you can run right so this is this is basically how an

application is there.

(Refer Slide Time: 06:05)

Now within every class there are two parts to that class, the first part what we may call as you

see here is what we call as the class declaration so what will be there in the class declaration, the

name of the class and also the variables that are part of this class, there are two types of variables

or two kinds of variables I should say the two kinds are, one are field variable another is called

static variable.

The field variable and then each of that field variable will have a type so therefore every variable

there is a kind which is field or static, there is a type which is int, in this case it is int, so X is a

variable, it is a class variable with its type as int and its kind as field, similarly point count is a

class variable which is type as int and its kind as static okay, now we have already seen the

difference between a field variable and a static variable so this is a class point right now we

instantiate this point in again and again.

So you can say point A, B, C, essentially if I say point A, B, C then I have derived or instantiated

three objects of the class point, object A, object B, object C, all the three are points, so there will

be a field variable associated with each of these objects, for example there will be A dot X, A dot

Y, B dot X, B dot Y, C dot X, C dot Y, but in the case of static there will be only one instance of

the static which will be covering all these points right so then there will not be A dot point count,

B dot point count, C dot point count, there will be only one point dot point count right.

So there will be only one static variable for all the instantiations of this particular class right so

why do we need point count, for example I would like to know how many times my point has

been instantiated, so every time I am instantiate a new point like A, B, C, I will keep

incrementing this point count so that you know ultimately I will know how many points have

been instantiated using this class, so that is an use of this static variable right.

So the static variable is common to all the instantiation or objects of this class while a field

variable corresponds to every instantiation there is a field variable that is created, now when you

create a class what it means to create a class I need to allocate memory for the field variables in

that class right so if I say point A, immediately for A, there will be two memory locations created

one to store X and one to store Y.

Similarly if I say point B, for B again two memory locations will be created, allocated by you

know you use the memory dot (())(09:18) we will see how to create that but you will create two

locations, one for storing the X and Y for B, but the moment I define point, there will be one

location that is created in the static segment so please go back, if you go back to the virtual

machine there are different segments like you know this, that, argument, local etc. so just revise

that, you had one segment called static segment, in the static segment there will be one location

created for point count which will be shared by all the three right so that is what.

Then you will have, so this is the class declaration part of your compilation and then the class

will have lot of subroutines and the subroutines are of three types constructor, constructor will be

constructing an object of a given class, so I will say point A that I should new now A dot new,

when I say a dot new then a new object of the type point is created which is now named A right

so the construct are basically constructs.

We just told that we need to allocate two memory locations for A right if you define A as a point

now these two memory locations are basically created by whom, the constructor right, so the

constructor basically constructs an object right and then there are methods and then there are

functions okay so the method is basically does not have a return value sorry the method basically

is something that it will, it has a return value sorry and it may or may not have a return value and

methods basically allows you to change the content of you know, allow you to do some

computations within the class.

Functions are those, so the method can basically go and change the variables in the class right,

your X and Y can also change here so methods are ways by which I can go and you know change

the content of your field variables etc. While a functions are those which will do some

computations on your field variables and give you some answers right so these are the difference

so there are constructors, methods and functions, so when you look at a class there are two

aspects, one is the class declaration which will have the name of the class and the set of field and

static variables, then you have subroutines, the subroutines are of three types constructors,

methods and functions right.

So when you compile, we need to do something related to class declaration then we need

something related to compiling the subroutines, so the compiler essentially is now in, can be

viewed into two parts right.

(Refer Slide Time: 12:18)

So this is what, whatever you are marked on the top blue rectangle this code is basically analyzed

for the class level compilation and then for every subroutine that you are saying like constructor,

method, method for example we will take one method in distance here right, so these individual

rectangles for corresponding to each method is taken for every subroutine level compilation right

so we have a class level compilation, we have a subroutine level compilation right.

(Refer Slide Time: 12:55)

So now what are the challenges now when we start doing the class level compilation we now

have variables, we need to handle those variables, we have field variable, static variable etc. The

moment I start compiling the subroutines again there are two types of variables in the

subroutines, namely the arguments and the local variables inside the subroutine, for example if

you take in distance point other, so other in this case other is an argument variable, while your

var int dx, dy, these are local variables.

So handling the class variables namely the static and the field variables and handling the

variables inside each of those sub routines which can be both arguments and also local variables

come under what we call as the handling variable section then we have to handle expressions, we

have to handle the flow of control basically a while statement, do statement etc. then we have to

handle objects, creation of objects and disposing of objects and then of course we have arrays

right arrays wherein string is actually an array so how do we handle arrays so.

And handling means what, there is when we write a jack statement which has an expression,

which has variables or when we derive a Jack object or when we handle a jack array there is a

semantics associated with it, there is a meaning associated with it right and what you mean to

compile, we need to give another virtual machine language code which essentially has the same

meaning okay, so in some sense the challenge here is to express each of these cases, the express

the semantics associated with each of these cases in the same VM language right.

So I need to get a VM language equivalent which will express the same semantics and that is

going to be the biggest challenge in this whole affair okay so we will now take each one of these

challenges and handle them in each one of the modules 10.2 to 10.6, thank you.

