Foundations to Computer Systems Design
Prof. V. Kamakoti
Department of Computer Science and Engineering
Indian Institute of Technology Madras
Module 8.6
Application Development using Jack

(Refer Slide Time: 0:18)

ST Svess T
EEEEEER HNN -

N % | n 1
jﬁu\ V‘\?y‘//.uu‘,,, g&v‘l/yﬁﬂdh/
TP R P |
dnd Cxanmple 7m !
\ [

/

—_—

So welcome to module 8.6 in which we will be covering the application development using

Jack and will also use some example from project 09 to show you how this is going to work.

(Refer Slide Time: 0:29)

Sample applications: Stats

Enter the students data, ending with 'Q":

Nane: DAN
Grade: 90

Nane: PAUL
Grade: 80

Name: LISA
Grade: 100
Nanme: ANN
Grade: 90
Nane: 0

The grades average is 90
The student with the highest grade is LISA

So we can write certain application like enter the student data, ending with Q right, so write a

program which will except name and grade, name, grade, name, grade, name, grade,

calculate, the grade, the average of their grades and also get the student with the highest

grade, so we can do this, so basically we can declare an array and do this.

(Refer Slide Time: 0:52)

Sample applications: Tetl‘is (by Mare Domink Migge)

Score: 88888
Level: 88888
0

Next:

by mdn

Sample applications: Bouncing Ball vy Gavin Stewan)

'fi'?

Ry
Nand to Tetris bouncing ball dero. Gavin Stewart 2013.

Sample applications: Space Invaders by Ran Navok)

LR LR

Score: 10

Level: 1 Lives: 1

Sample applications: Sokoban (by Golan Parashi)

...............

Status:
Level: 1
Pushes: 38
Commands:
[1-5] Level
[UIndo
[Rlestart
[$lolution
(it

So this Tetris game which is finally we are going to play is this, this is one application that is
developed, there is also an nand2tetris bouncing ball demo that has been created, these are the

space invader thing, Sokoban has been done on Jack right, using Jack on hack okay.

(Refer Slide Time: 1:25)

Developing a Jack application

Put all the app files in one directory, whose name is the app name
Write / edit your Jack class files using a standard text editor

Compile your Jack files / directory using the supplied JackCompiler
(available in nand2tetris/tools)

Execute your app by loading lhui}pp dimmr}g“ hich now contains
the compiled . vm files) into the supplied VM emulator,
and running the code

So how do you develop this whole Jack application? Put all the app files in one directory
whose name is the app name.jack, write/edit your Jack class files using a standard text editor,
compile your Jack files using the Jack compiler as we have shown and execute your app by
loading the app directory which now contains T.vm files into the loading app directory, so if
you have multiple VM files, you just click on the app directory as I showed you, on the VM

emulator we can see this.

(Refer Slide Time: 2:00)

Running a Jack application

e vew fun e
FES YT §.X P
St e (ot —3) (390 3) (0
Progm apn sutle
T 0 0
-4 3 |
-y H H
3o et H H
i H H
e =
Hie gt =
-] - - 24
' o g]
3 b s 1 [
0 s ! '
U e Wi s
12 push comstnt S10 = .
5o npe
14 puh leaal0 e
" 0
H a
= H H
@ } ' ot sk am
= 5 m
™ ® »
T ¥ B w
i Y = -
) H)u m.
5 0 #
®
Gallsuck - 5 w0
W
el]
3 v w
H H w
o w
e »
. m

High level language: lecture plan

High level programming Application development
+ Hello world + Jack applications
* Procedural programming -' Using the OS
+ Object-based programming * Application example
+ List processing * Graphics optimization
Jack language specification %

+ Syntax

+ Data types
+ Class
* Methods

S

Handling output: text

Textual apps:
* Screen: 23 rows of 64 characters, b&w

* Font: featured by the Jack OS

* Output: Jack OS Output class

class Output {
function void moveCursor(int 4, int)
function void printChar(char ¢)
function void printString(String s)

function void printInt(int i)

function void println() 05 class. for handling
textual output

function void backspace()

So we have seen this how to run a Jack application and using the OS we have already seen so
for output, you could there are different classes in the OS, so we have class output, which can
move a cursor, you can print a character, you can print string, you can print int, print LN,

backspace, so all these things are possible.

(Refer Slide Time: 2:26)

Handling output: graphics

Graphical apps:

+ Sereen: 256 rows of 512 pixels, b&w

+ Output: Jack OS Screen class (or do your own)

Class Screen {
function void clearscreen()
function void setColor(boolean b)
function void drawPixel(int x, int y)
function void drawLine(int x1, int y1, int x2, int y2)
function void drawRectangle(int x1, int y1, int x2, int y2)

function void drawCircle(int x, int y, int r)
0S class. for handling
graphical output

For the graphics there is a clear screen, set color, drop pixel, draw line, draw a rectangle,

draw circle, so almost all these things can be done.

(Refer Slide Time: 2:33)

Handling inputs

Input device:
+ Standard keyboard

+ Input programming;

use the OS Keyboard
class

Class Keyboard {
function char keyPressed()
function char readchar()
function String readLine(String message)

function int readInt(String message)
) OS class, for handling
input from the keyboard

For the inputs from the keyboard I can check whether the key is pressed, I can read a

character, I can read a line, I can read an int from the keyboard.

(Refer Slide Time: 2:43)

The Jack character set
[] I
(space) | 32 newline | 128
13 1|49 B|66 b|% backspace | 129
“|34 al | c|% left arrow | 130
#|35 9|57 : uparrow | 131
$|36 T Z|% 2|12 right arrow | 132
%37 5 i down arrow | 133
ES o e { f home | 134
£ - = |} 12: end | 135
(|40 I i Page up | 136
)@ “E B 2 Page down | 137
] = insert | 138
+|a3 AL 153 delete | 139
> |44 esc | 140
- |45 f1 | 141
= Keyboard. keypress()
e returns the code of the currently pressed key, pre
or @ when no key is pressed

This is the entire Jack character set, so the keyboard.keypress if you use return the code of the
currently pressed key or 0 when no key is pressed, so 0 is not assigned to anyone and this is
the restricted Jack character set, so when I define an architecture, when I defined an OS I

have to define my own character set which the hardware should interpret and give it to me.

(Refer Slide Time: 3:07)

The Jack OS: math

class Math {
function void init()
function int abs(int x)
function int multiply(int x, int y)
function int divide(int x, int y)
function int minint x, int y) .
function int max(int x, int y)

function int sqre(int x)

Than this is the math library, you have eight functions here, note that our hack architecture
does not support multiply and divide as an hardware functionality, it only does addition, so
multiplied, divide is provided as a math library here and we have main, max, square root and

these absolute values and in it functions also, in it will initiate the math library.

(Refer Slide Time: 3:33)

The Jack OS: string

Class String {
constructor String new(int maxLength)
method void dispose()
method int length()
method char charAt(int j)
method void ietthm\%{int 3, char c)
nethod String appendChar(char ¢)
method void eraseLastChar()
method int intValue()
method void setInt(int j)
function char backspacef)
function char doubleQuote()

function char newline()

For string again a lot of things that string, new string, dispose a string, length of a string,
character at particular location in the string, said the character at a location, so set char at will
actually set the character C at location J, append the character at the end of the string, erase
the last character, int value of the string, set int, int J, backspace, double quote, newline, so

these are all of the string functionalities of the Jack OS.

(Refer Slide Time: 4:15)

The Jack OS: array

Class Array {

function Array new(int size)

method void dispose()

}

And class array, array has new and dispose and it is not type, so I can do, I can store multiple

things in the same array, one location integer, one location character etc.

(Refer Slide Time: 4:25)

The Jack OS: menory

class Menory {
function int peek(int address)
function void poke(int address, int value)
function Array alloc(int size)
function void deAlloc(Array o)

}

Memory, memory has the following functionalities, peak, poke, alloc, dealloc, peak means it
will go and read from that address, poke means it will quote the address and write a values, so
I can write into particular memory, I can allocate function array, allocate function void
deallocate, I can allocate an array, so the argument is or an array memory.array, memory.alloc
will give me an array of so many elements size and the allocate it takes an array and

deallocates all the values there and it freezes all this things and give it back to the heap.

(Refer Slide Time: 5:11)

The Jack OS: sys

Class Sys {
function void halt():
function void error(int errorCode)

function void wait(int duration)

d

There is a sys which will halt the system, which will print an error code, which will wait for a

particular duration, these are all operating systems functionalities.

(Refer Slide Time: 5:20)

Sample Jack programs

a Square: a simple, interactive, multi-class OO application
a Pong: a complete, interactive, multi-class OO application
a Average: illustrates simple array processing

various array manipulations, including
two-dimesional arrays

o ComplexArrays:

a ConvertToBin: illustrates algebraic operations, and working with
peek and poke

Code: nand2tetris/projects/11

So you have seen a lot of things like square, pong, average, complex arrays, convert, so these
are all sample programs that are available, you can look at this in 11" project, project 11 right,

so we can see many of this Jack programs, understand this Jack programs.

(Refer Slide Time: 5:39)

Best practice

General
+ Watch some existing Jack programs (see “cool stuff” in www.nand2tetris. org)
* Play with the supplied programs, and review their code (e.g. Square and Pong)
+ Understand the UX limitations of the Jack /O
* Plan your app carefully (OO design and testing strategy)
+ Implement, test, and ... have fun!
?

Technical
+ Writing: Write / edit your Jack class files in a standard text editor;

The OS APLis supplied in nand2tetris/projects/e9
+ Optimizing: later
+ Documenting: use standard practice
+ Compiling: use the supplied JackCompiler (available in nand2tetris/tools)

+ Executing: load the app directory (which now contains the compiled .vm files)
into the supplied VM emulator, and run the code

(remember the emulator’s speed and animation controls).

So the best practice is general watch some existing jack program in nand2tetris.org, play with
the supplied programs, your square and pong, understand the you know, user interface
limitations, plan your app carefully, implement, test and have fun, so the technical part is, you
should write the Jack class files, optimising vision to a later, documents some of these use
this as a standard practice, compile using Jack compiler, execute using the VM emulator

using this. Okay.

(Refer Slide Time: 6:12)

ngh level Ianguage- lecture plan

High level programming Application development
+ Hello world + Jack applications
+ Procedural programming + Using the OS

* Object-based programming " Application example

+ List processing + Graphics optimization

)
Jack language specification

* Syntax
+ Data types
+ Classes

+ Methods

Objectives

The Square code review illustrates:
+ 00 design

+ Atypical interactive application
* Handling inputs and oulputs

+ Using the OS

Demo

Square Dance

Square Dance game

When the game starts,
ablack square appears at the
top left of the screen. o ’
= &
If the square hits a wall,
it stays there until some.
wser action frees it

11 the user presses:

« upamow: the square starts moving up, unil another key is pressed

+ down arrow: the square starts moving down, until another key is pressed
* leftarrow: the square starts moving left, until another key is pressed

+ rightamow: - the square starts moving right, until another key s pressed

* xkey the square’s size increases a little (2 pixels)
* zkey: the square’s size decreases a little (2 pixels)
L game over. ~

So we can see of this as a square dance demo, the square which we showed, the up arrow will
take it up, down arrow will bring it down, we started looking at this, the X key is at key will

decrease and increase the square size right.

(Refer Slide Time: 6:41)

App design

When the game starts,
ablack square appears at the
top left of the screen. < >
- =
MVC model
Three Jack classes:
+ Square: represents a graphical square (s
+ SquareGame: captures user’s inputs and uPATES MANPULATES
moves the square accordingly | [
(ina loop) VIEW CONTROLLER
+ Main: starts the app, initializes the game, \:,r }f
and launches it o V4
USER
(source: Wikipedia)

So this has three classes square, square game and main, we saw that as a part of our there

exercise right.

(Refer Slide Time: 6:49)

Square class API

Square APT

ts a graphical square. *

** Inplesents
class Square {

Constructs a

e square with a given location and
constructor Square nea(int Ax, int Ay, int Asize)

** Draws this squ
sethod void drau()

o5 this square froa the scree

Bethod void erase()

+* Incresents this square’s size by 2 pixels
sethod void incSize()

Bethod v

right by 2 plxels

Moves this square rig
sethod vold moveRight()

-
 §
SquareGame class
SquareGane. jack
class SquareGone {
field Square square; //
fleld int direction;
var boolean exit;
let exit « false;
while (~exit) { typical handling of
waits for a key to be pressed “keyboard events” in
while (key = @) {
b P e et sk opps
do movesquare();
iF (key = 81) { let exit = true; }
i (e 30 b et } /1
if (key = 88) { do square.ineSize(); }
;

So you can look at the square, this is the functionality of the square right, so this

functionalities up, down, left, right square should move and X and Z should increase or

decrease in size and this Q means game over, so this is what it should do and how is this app

actually designed, the set of slides basically tells you how that is designed okay.

(Refer Slide Time: 7:31)

Sokoban (by Golan Parashi)

Level: 1
Pushes: 39

Corrands:
[1-5] Level
(UIndo
[Rlestart
[Slolution
it

BE X =

So these are nice ways because the pixels are given here, we have a limited number of pixels

within that you need to create all this beautiful things graphics.

(Refer Slide Time: 7:42)

Handling sprites

Sprite

A two-dimensional bitmap, typically integrated into a larger scene
Challenges

* Drawing sprites quickly

+ Creating smooth animations

Solutions

+ Use the standard OS graphics library

+ Use your own graphics functions

- I R R

So this is all some very interesting challenges of how do you read this small graphic libraries,

you can create this libraries and start using these objects one by one as a part of this.

(Refer Slide Time: 7:55)

Hack 1/0

Hack RAM

0 | 0001100000100100
1| 1111000910100001

refresh
8K screen
memory map
24575

24576 1 word kb map

Ul
32767 | 1000111100111168 '\\D

And of course the hack I/O have already seen, there is a 8 kB screen memory map and one

word keyboard map right.

(Refer Slide Time: 8:04)

16384
19903

2575

32767

Memory map

Hack RAM

0001100000100100
111100001010001

6006000000000000
1111111111111

000003600660000

1666111100111168

Accessing memory: read / write

012.. 511
@
refresh 2
8K screen
memory mapy
255

Hack screen:
256 rows by 512 col

16384
19903

2575

32767

Hack RAM

0001100000100100
111100001010001

6006000000000000
0000000000000111

0000036600660000

1660111100111168

Accessing memory: read / write

The OS Meriory class APT
+ function int peek(int address)
* function void poke(int address, int value)

Jack code
let x = Menory.peek(19693)

/1 x will be set to 7

do Menory. poke (19093, -1)

/1 RAN[19003] will be set to
/f nmnnnIn

L]
1
2

16384
19903

2575

32767

Hack RAM

000110000100100
1111000010100001

6006000000000000
0060000000000111

8006000000000000

1060111100111168

The OS Memory class API
+ function int peek(int address)
+ function void poke(int address, int value)

Jack code
let x = Menory.peek(19693)

/1 x will be set to 7

do Memory.poke (19093, -1)

1/ RAN[15003] will be set to
// 1111111111111811

So this is how the hack, so from a Jack language can say let as is equal to memory.peak
19,003 than it will go and write, it will get a values 7 because in 19,003 actually you see the
value 7 here and similarly I can say memory.poke 19,003-1 and it will go and immediately set
memory to 111111, -1 in twos complement is all once right, so I can read and write memory

using this.

(Refer Slide Time: 8:46)

Drawing pixels

oaset”’

£

""n

1e(416, 155,412, 155) ;
'e(410,156,412,156);

I/ draws the image
do Screen. drawRectangle(410,155,412,156);

So any screen I can say draw.pixel 410, 115, so it will go and, so if I put all this
screen.drawpixel it will print all this 6 dots here as you see here, so I can set the color as 1 or
0, I can draw pixel, I can draw a line right, I can draw a rectangle, I can draw a circle and
these are all given as OS screen class to us right, normally this is currently done by the hack
CPU in the advance computing, these functions will be done by the hardware, the graphics
card right, you have seen NVIDIA and other cords, those cords will be given the

responsibility of drawing this lines, etc.

So the main CPU will not do this functionalities, it will delegate it to us separate hardware
but in the case of hack, the hack computer, if you say draw pixel of course there is a code that
needs to execute which will draw the pixels here right, which will draw the line and
rectangle, that will be coming to the hack computer and the hack computer will be executing
it, but in a case of real systems, there is a graphics coprocessor, the graphics card, you are
NVIDIA, test lock cord etc that will be doing on your behalf right and that we the CPUs

relieved of some functionalities.

(Refer Slide Time: 10:19)

Standard drawing

Image drawing code

133333330 EERER

/ Draws the top row
do screen.dranPixel (6,1);
do Screen.drawPixel(7,1);

do Screen.dranPixel(12,1);

/ Draus the bottom row
do Screen.drawPixel(3,16);

do Screen.drawPixel (15,16);

5l i B

Efficiency:

75 pixel drawing operations

0S implementation of drawPixel (v,y)

11 sets pixel (x,) to black / white
yta/16

valie = Memory . peek[16384 + address]
setthe (v % 16)th bit of value to O or |

do Memory . poke (address, valtie)

address =32

Perspective

Jack is a nice little language
Featuring most of the essentual elements of
+ procedural

+ 00 programming

Limitations

Motivation: a minimal language
+ Few control structures =

that can be implemented by a
+ Some peculiar syntax simple compiler
+ No inheritance
Data types
+ Primitive type system Motivation: to give the
1 programmer full control,
+ Weakly typed especially for writing the 0S.

So I could have this types of, I give you, will show one demo of this type of custom drawings
okay, so to sum up Jack is an very nice little language, limitation is has few control structures,
some particular syntax, no inheritance type of things, it is not a fully-fledged of object-
oriented type and it has very weekly typed, so this gives the grammar full control specially
for writing the OS etc, so we make this language simple, enough because want to teach the
essence of how to construct a compiler, the backend code, etc, and that is why this language

as simple as possible right.

(Refer Slide Time: 11:15)

R L ————————

Sokoban Bitmap Editor

Usiagemouse
ek e g bt
When e e .4 oyt e e s

Boms Gt Jck Cde
A3A3ATOEETER

ftion v e ncation
e s - b

FecusaTpe
ncin
-

G ot

| Ve

© o B owiamer » | B owome

it 0

B ouwonempe ~

PR T TRy e p————
[T - -
o 5 e
o -
@ i T
et vt
"]
Bue | oms 1

i part of wew sandicrerin,
77 and tho bock Tl ot Compiting
77 by Rioun and Schochen, KiF brenn,

11 Plte name: projectalth/Prsctionriain. o

class ain |
.

<Fe
-

"

[r——r—

LR e ———

IDC ey A Schoof ompe 5

¢ < g nowa

Sokoban Bitmap Edi O e o

o KA

BrQanx A2 @Euad

Vg o ek desied o] et o
e e gt bt -

Ths e g e o . o

When o e e v, s o

Boms

R191333a3IE0EE e vois srmebisma) (
o Bienapdrsw(10)

Vs

B opmnemsst | 8 omwimemig o B apwoenns © B omonenr o

rel e
&b
§
NPTEL
=t
= -
£y
§a
\¢
NPTEL
vel e
Fob
{6
&
NPTEL
=

2

=
. T .
i —— b =
i

i
P

4
’

B

P

%

o

Fle Bt Viw Wi Hep

68 8Q © » 800 BT 82

N0 ETISES IE CIRTICIET UISIIYEU Wete.
&
function vold printChar(char c): displays the given character at the cursor location, and
I SIS U VUGS GISpIYEQ UicIE 8 o
function void printChar(char c): displays the given character at the cursor location. and =
advanes the cursor one column forward
o
function void prantstring(String s): displays the given string starting at the cursor location, ¥
and advances the cursor appropriately
function void printInt(int i): displays the given integer starting at the cursor location, and £ i
advances the cursor appropriately 0 o
function void printin(): advances the cursor o the beginning of the next lne 8
o 3
function void backSpace() : moves the cursor ong column hack v
y
Screen
o 5 . 4
A library of functions for displaying graphies on the sereen. The Hack physical sereen consists of d

512 rows (ndexed 0511, top

om) of 256 pixels each (indexed 0..255, leli to nght). The
1(0.0),

top left prxel on the screen i

function void clearScreen(): ¢rases the entire screen.

function void setColor (boolean b): sets the current color, Lo be used lor all subsequent drawxxx

commands. Black 1s represented by true, white by false

function void drawPixel(int x, int y): draws the (x,y) pixel, using the current color

So with this we just show very quick demo and then and this entire module, the demo is
basically that on the last part basically will go and see this bitmap editor, there is a, so we can
basically, so this is a completely square, Sokoban editor, so I can basically want to make
some figure like this, so I can basically, so I want to make a figure like this, this is as
probably as make or control, so I want to make a figure like this, so I can say generate the

code and this is the code that is generated right.

Now, so this generates a Jack code, now we can go back to your thing and there is a main file,
main.jack which will call this a., So this file, you need to create main.jack with class main,
void main, we have var bitmap A and do a.drawbitmap and return, so bitmap is another class
file that you use here, so in this bitmap you have this Jack file and then you can create this

method, void, draw bitmap, do bitmap.draw10 return and then right, now from 10, so do

bitmap.draw, in this bitmap.draw whatever you have got as a part of your HTML file here this

whole thing you can cut and paste here.

So you can cut and paste this entire thing, copy and then go back to this and then you can just
paste it here. Okay and then right, this is the whole thing now we can save this whole file, so
this is very nice interesting way of creating this applications, now we can go to your this
thing and you can compile this, this is actually called as bitmap editor, such says some error
is there, let us, we will just say wherein name, address and then we can basically run this
code, yes, this is done now let us execute this code as part of your projects, let us go, let us
take the VM emulator right and then letters load this particular program which is part of your

bitmap editor, this is loaded, yes and now let us run this program at full speed and see.

Now you start seeing something happening here as a part of your yes, so this is a nice way of
trying to understand the thing, so this is, so you have created a small logo here right, so this is
one very nice application and then to just sum up these, if you go to your projects 09, inside
09 you have this complete PDF file of the Jack OS API, which contains whatever we have
described as a part of this lecture, so enjoy doing Jack, try to do write some Jack programs,
compile it using the Jack compiler, execute it on the VM machine and get familiarize with
this language, at least these 5 programs, 6 programs that we have seen, we can get familiarize
and there are many more programs on the net and also on the Nand2Tetris.org site, just look

at those programs and that is going to be your project 09.

So this is a different project, where you do not do much, you do not program but you
understand the language and basically while executing VM please go to the different steps,
especially when we are calling certain operating system APIs that you have listed as a part of
this right, so how does the operating system support the ecosystem of execution of the
program and that is very, very important as a part of this, all the best and we will meet at

module 9. Thank you.

