
Foundations to Computer Systems Design
Professor V. Kamakoti

Department of Computer Science Engineering
Indian Institute of Technology Madras

Lecture 01
Module 6.5
Project 7

Deep Understanding of VM ISA using VM Emulator

So welcome to module 6.5 and in this module we will be explaining Project 7 which is

essentially the translation process, the translation from the virtual machine instructions to the

pneumonic of hack, right. We have seen a set of examples and set of you know a basic idea of

how this would do but now what we will do is to give you are very concrete explanation of

this entire process right. So as a part of Project 7 we will be basically handling 2 instructions

right, stack arithmetic instructions which are those 9 instructions add, sub, OR, AND (())

(1:09) neg, NOT, then greater than, less than and equal to, we have basically seen how these

operations work.

(Refer Slide Time: 2:49)

And then we will also be handling the memory call the memory access functions which is

push of segment index and pop segment index. And we have also seen there are 8 different

segments, the segments that will hold the arguments, the segments that will hold the local

variables then two general-purpose segments this and that and then there we have a

temporary segment which is told in the rank between 5 and 12 so there are 8 locations in the

temporary segment and then we have pointers to this and that we have pointers segment and

then of course constant. So the segment here in the case of push can take any one of these

one, 2, 3, 4, 5, 6 and constants okay so and static of course, anyone of these 8 values this

particular segment can take.

So what it push means is that the value from the segment, whichever segment + index need to

be pushed into the stack. Pop is, from the top of the stack remove an element and put it into

the value given by the segment, so the address pointed out by the segment index we have to

take from the stack and put it here. Now this segment in the case of pop we cannot have it as

constant because I cannot take a value and put it in a constant right. So for pop, constant does

not exist but for push all the 8 exists 8 different segments exist and for the pop there are 7

segments except constant. And so these are the type of legal instructions that we will see in

your vm file and every such instruction we have to translate it into the corresponding hack

pneumonic and that is all our Project 7, is a very easy project, it hardly takes one hour for you

to complete.

I will tell you how to go about it and then you can take it forward and this time this is exactly

the time where we talk about compilation one important thing is that when we surveyed many

of the education curriculum especially in the case of compilers, back end, compiler has 2

parts; one thing is you have a language, you do a syntactic analysis, you do a passing then

you actually generate an intermediate representation and from there you do something called

back end which is basically you translate that code into the assembly language, the real

translation process, the assembly language of the target architecture.

What we are doing here is essentially the part of the back end, where we are taking the virtual

machine code which is actually intermediate representation. So that is the original

programming language where the compiler will convert it into that intermediate

representation, now we are taking that intermediate representation and getting onto the

pneumonic so the back end process is basically done here and this is the point where we need

to study about compiler optimization and so many things and many curriculums actually do

not have big emphasis or give lesser emphasis for the back end.

It is very important that we learn back end because back end is one that is going to become

extremely important especially when we now talk of varieties of processes coming up and

specifically targeting different types of applications, etc, back end becomes extremely crucial.

So this for particular projects 7 is very-very important for any aspiring computer scientist or

computer engineer okay, so let us give our full effort and see how we go about this particular

problem, right.

(Refer Slide Time: 5:44)

Now let us understand the VM instruction in its full glory right, so we have been talking

about that with some pieces, I am sure you will have a vague idea, now I want to concretise

that idea. Whatever you have it should be crystal clear of what every instruction supposed to

do, and to aim this so there is a tool that is given as a part of the software which is called the

VM emulator, the virtual machine emulator now we will use the VM emulator and basically

tell you how things will work.

Now we have already explained that when a particular program starts executing and functions

starts executing, the function will have different types of variables like we have local

variables which is stored in the local segment, arguments that are passed which is stored in

the argument segment and then it will ask for some extra space (())(6:33) and those 2

segments are this and that and then of course for doing all the arithmetic computation this

being a stack-based Virtual machine, we will use a stack. Now there are 5 different areas of

memory what we call as segments of memory where the values of the local variables,

arguments, this, that and sacked all this would be stored.

Now when the architects are executing, it needs to know where the stack starts is the base

address right, and where the local segment starts, where the argument starts, where the This if

at all I am using it where it starts. So those based addresses of this pack segment, local

segment argument This That are stored in your data RAM on the location 0, 1, 2, 3 and 4. So

please this stores the base address of the stack right, and then there is a temporary segment

which we can again use in addition to this and that the compiler can use the can use the

temporary segment. The temporary segment of memory has 8 locations starting from 5 to 12

in the RAM in the data RAM, you have instantiated that data RAM and in the data RAM this

5 to 12 will be for temporary.

And this 13, 14 and 15 are again registers or temporary we call it as scratchpad memory,

which is again free anyone can use it is just a scratchpad so we can just use it again okay. So

essentially, to have a… So this is how you understand this whole thing right, so I have these

segments, the based addresses are stored in 0 to 4 then I have a temporary segment which has

8 locations, I can store any data and retrieve it, the temporary data segment is between 5 and

12, 8 of them and 13, 14, 15 are still scratchpad which still I can use it, right. And when you

actually did the assembler, you have assigned this as you know R 5 so from here right R 0, so

R 5 to R 12, this is R 13, R 14, R 15, if you go to a single table you would have matched to

13, R 14 to 14, R 15 to 15 right.

So if I want to access this location so how do I access R 13 if I want? I just pray at R 13, the

moment I say R 13 your A at register will get 13 because at R 13 in your single table it is

mapped down to 13. Now I say M so M is M of A so this whatever value in this 13 will come

out, so if I say D = M then I can actually hear the value that is stored in 13. If I say M equal

to D then I can write whatever is there on the D register onto the same right, all these

operations I can do. So this is one simple understanding that we need to have before we start

using the emulator. Now we will start using the emulator and run from interesting code here.

(Refer Slide Time: 10:00)

So how do you invoke the emulator, right? So I will rotate here I will again start from the

beginning how do we go and import the emulator okay. So go to your 92 Tetris directory, go

to your tools, there is VM emulator dot windows back file, if you are using Linux you can use

dot sh, in Windows use this VM emulator. Okay, your emulator has come up, now let us take

some programs here, so load a program right, so I can load a program yeah so when I say

push constant 17, 17 gets pushed into the stack and this is 0 is direct 257, the stack now stack

segment no points to 257, so 17 is pushed into the stack. Again I push another 17 so 17 so

stack now becomes 258 stack pointer becomes 258, it is in RAM 0 again.

Now I am doing EQ, what will EQ do? It will compare whatever is there on the top of the

stack, namely 257 and 256 and if they are equal then it will pop them out so you now see 256

as – 1, what is - 1? 11111 that is so now let us do this EQ, so from the stack as you see both

the 17 are matched and the answer is - 1 and the - 1 goes back to the stack pointer. Now the

stack has - 1 alone and your stack pointer now is in 257 right, so this is what basically

happens here. Now I am now trying to push 17 now to so 257 will again get 17, now 258 will

get 16, now we are now going to compare EQ, then that means 257 and 258 will be compared

and if they are equal, they are not equal so essentially now we have to get in 257 we have to

get 0 that is false because you pop these 2 values and then compare and then whatever is the

result we store here.

(Refer Slide Time: 13:28)

Now we do this, so first 16 is bought down that is why then 17 is bought down, they are

compared for equal to, they are not 0 now 0 goes back and stays in the stack right. Now again

let us do this, now your stack is at 258 now 16 is pushed so 258 will get 16, now 17 is pushed

so 259 will get 17, stack pointer now is 260. Now again I am comparing EQ, now you will

say 17 goes up, 16 goes up, 16 is XCR in this case, answer is 0 the 0 is pushed so now your

stack pointer is 259 because 256, 257, 258 are full.

Now I push 892, I push 891, now I say less than again so less than we have to be careful,

please note that X is 892, Y is 891 so I am comparing 892 with 891 for less than. Obviously

892 is not less than 891 and so you should get 0 and that 0 will now go and stay in 259 and

the stack pointer should become 260 after this operation so let us see that. So 891 is Y, 892 is

X we have already explained that so the answer is 0 and that goes there and the stack pointer

now is 260. Now again I am pushing 891 into 260, 892 into 261 now I am doing again less

than here so 892, 891, yes 891 is less than 892 so the stack should get - 1 so stack gets - 1 and

we are at 892.

Now again we do the same thing, 891, 891 now less than we compare… 891 is not less than

891 and so I need to get a 0 and the stack now becomes 262. Now I compare 32767 with

32766 for greater than yes… Y is 32766, X is 32767. 32767 is indeed greater than 32766 so

the answer is - 1, - 1 is true 11111 the decimal 2’s complement of that and then your stack

now should point to 263. So 263 is now having 32766 but is part of the previous computation

so when I could out of the stack, when I pop something I am not going to erase that, I am just

reducing my stack pointer right. And the next time so if I am pushing now again I am pushing

through it 32766 so 32766 again comes here right and 32767 is loaded, now we are saying

greater than now obviously 32766 is not greater than 32767 so I get a 0 there.

So 263 becomes 0, now the stack is 264 but originally the stack was 264 th location was used

for storing the 32767, we have not removed that 32767 right. So something that was used in

the past is still left over in the stack right, what is that that when popping means I reduce my

stack pointer so the fresh thing like I am now going to write 32766, that 32766 replaces this

32767 as you see here but the original 32767 was not removed right. Now this is one major

issue when we come to information security right, so when you take advanced process in

information security what would happen is that something that you have written in the stack,

when you pop out of the stack, you do not even it like we are not erasing it here.

And since you did not erase it, some other process which is trying to access make get the

same stack and they will see all these values that we have used which are not erased and that

is how some of the critical information like passwords, etc, can leak out so this is one very

important thing so when you actually write a compiler is a secure compiler right that secure

compiler should say whenever I pop you should make it 0 and then only pop so this 32767

should not have been there when the moment I pop.

(Refer Slide Time: 18:02)

So in this operation also we will see 32766 is loaded into 265, now I am saying greater than

so obviously 32766 you can see the animation that is happening very nice one right. So 264

became 0 because 32766 is not greater than 32766 so that operation got over but still that

32766 is still there which is used in the previous operation though now I am going to replace

it with 57 now right but it is still there. So this is one thing, when you write a secure compiler

it should not be there you should make it 0 otherwise the next process, this information will

be available in the memory and some other process which will use the memory later can

basically get out the critical information. Suppose you stored passwords instead of numbers

here then it can go out, so this is very important clue that you should keep in mind right.

Now let us go and see, now I am going to push 57 inside yes, then I am pushing 31 then I am

pushing 53, these are all constant push. I am going to do add which will add 31 and 53, 84

and it will make 266 as 84 and my stack should become now 267 right, so this is how it will

go… sorry… 53 + 31, 84 now goes back into the stack. Note that that 53 is still here, this is

what 84 is the answer, now I am pushing constant 112, now I is subtracting 84 from 112 yeah

112 from 84, X is 84, Y is 112 always this is index. So when I do subtract, 112 is Y, 84 is X,

84 – 112 is - 28 so - 28 will take the position of 84 and the stack pointer now is 267.

(Refer Slide Time: 21:22)

Now I do negate, what will negate do? It will go and make the element on the top, what is

there on the top of the stack? 267 is the stack pointer, always a stack pointer points to the

location where I can enter something fresh, the top of the stack is one less than that stack

pointer again you should remember that so - 28 on the top of the stack, now I do a negate and

it should become 28, so -28 comes here it is a unary operation, I negate and then 28 goes

back to the stack. Now I am pushing constant 82, now I am doing an AND so I am taking 57

and 28 and we are getting 82. 57 AND 28 so for doing this AND probably we can use it as

binary then we could have appreciated this, I do not know whether we can backtrack this let

me see, I cannot backtrack, so 57 and 82 got AND so that it became so let us go back, we will

explain the OR.

Now I am pushing 82 inside to the stack yes your stack is now 267, now I am going to do an

OR operation, so let me just do binary. So what will OR do? It will take the top 2 fellows and

do an OR of this okay so let us do how it is going to… 266 and this has gone and so it is 90

and we have got this 1011010 so this is the OR right. Now again I change (())(22:11) now I

am going to do a NOT of 82 that is interesting, so I just do NOT of 82 so I should get all

11111110 okay so I just do a NOT so this becomes - 91 in 2’s complement arithmetic okay

and that is it, this is how these things work. So when I push, what it means to push

something? go to your RAM location 0 that is at P means your RAM location is 0. Read the

content of RAM location 0 that will give you the stack pointer that address will be the stack

pointer.

And if I am doing a binary operation, go to the one address below it get Y one more address

below that, get X, do the operation. We will say unary operation, go to that point and then

after that reduce the stack pointer that means go back to the 0 and decrement its content by 1

that is what you mean by reducing the stack pointer, so this is what you do in the case of

binary operations right. In the case of you know push operation what you do? You go to the

stack pointer, whatever is the memory location go to that memory location and write

whatever you want into it and then go back to the 0 th location and increment this value say

from 266 to 267 right, so these are some of the things that we are getting and this

understanding you need to get out of this.

(Refer Slide Time: 23:58)

Now let us do some more of things, so we have done stack test, let us do say we will go up let

us do memory access, this is very interesting. So let us go… So this is the program again note

that your stack segment is initialized to 256 let us go one by one, push constant M in O what

will happen? So pop local 0, the local segment starts at 0 that 0 + 0 is 0 because what is the

base of the local segment? It is 0, that 0 + 0 is 0 so you pop the value of the stack that is from

10 onto 0 + 0 = 0 so your stack pointer now should become 10 that is what should happen,

understand? So local is the segment, its base address is 0, I add 0 to that that is 0 so that

means that the address to which I need to pop his 0 and what I will pop in so now your stack

pointer should become 10, let us see whether it is happening.

Now what are we understanding? See I have to, when the system boots up, the operating

system we have to allocate some space for the local segment. Everything I made 0 so this

obviously should not work right, so let us reload this program again and then we should also

look at the script okay, now this is something very interesting look at the script and there you

will see what are the things that will be set. So my RAM 0 basically is 256 for the stack, now

I will go and set my local segment as 300, we have to set the local segment as 300 and my

argument segment as 400, everything cannot be 0 so I have to allocate memory when the

program starts executing, I need to locate memory for that function, I mean so the operating

system has to allocate memory for that function for storing the different segments otherwise

things will not work and that is what I have demonstrated here, right.

So I make this as 3000 and that as some 3010 okay so this is something that we need to load

okay. So what I have done here is as follows, the stack is 256, this particular program is

actually going to read from the local segment there are some local variable so for the local

variables I want to allocate space so I say let your local segment start at 300 so anything that I

want to write local segment will be from 300 and your argument will start at 400, your This

will start at 3000 and your That will start at 3010 right and Temp always will start from 6552

12 okay. Now let us reload this program, I reload the program, we have loaded the program

now let us go inside all these things, this should be 300, this should be 400, this should be

3000, this should be 3010 okay and now let us start executing.

Push constant 10, so 10 gets pushed into the stack, pop local 0 so local is a 300 right local is a

300 so 300 is the base for local + 0 so the address to which I need to pop is 300, in the 300 th

location I need to pop the value, so the 300th location will become 10 and your SP will again

become 256 after this, let us see whether it happens, right. As you here, yes your 300 location

became 10 and your SP has become 256, let us see what will happen at the 300 memory

location, we can go down here and we can see that the 300th memory location has become 10

so this is how it popped.

So what does pop to? First it will go, it will find with segment you want that is local, it will

take the base address of that local, add with that index, it will find the address to which I need

to pop that is in this case 300, now it will go to SP right, it will get the stack pointer value, it

will go one below that stack pointer value, whatever value is there it will now go and put to

the calculated address in this case 300, so then goes to that address and now I decrement the

stack pointer, now stack pointer is now 256 stack is actually empty now. Now I am pushing

constant 21 so 256 gets 21, now 256 will get 22, now I want to pop this to argument 2, so

where does argument starts?

Go to RAM location 2 and you find that address 400, 400 + 2 because you said pop argument

2 so 402 now I need to go to 402 and 402 I have to pop 22 and your SP will now again

become 257, so your 402 will get 22 and your SP becomes 257, let us see that. So in your

argument 22 come and it become 257, now if I go and see 402 right if I see 402 you get 82

here. Similarly, pop argument 1 so in 401 you will now get 21, 401 you should get 21 and

your stack now has again become empty that is it again points to 256, you pushed 2 constants

and you popped.

Now I say pop this 6, whereas this goes to location 3 again in the assembler symbol table we

have marked this as 3, right go to that 3 so that will be 3000 + 6 = 3006, 3006 should get the

value 36 now, we have actually pushed constant 36 there now 3006 should get the value 36,

now let us see. So we have only till… this is a global stack (())(32:05) so 3006, be careful in

just scrolling this, I can just so I am just giving you so that scrolling will become extremely

complex like it becomes slow now I can go and say so 3006 gets 36, I can use this search

option okay.

Now again push constant 42, 45 now pop dot 5 so that is at 3010 + 5 = 3015 you pop 45, so

3015 should get 45 and 3012 should get 42 because you do pop that 5 and pop that 2 let us do

that. So how did you calculate this 3015 because that in the assembler single table is 4 so go

to that address 3010 add 5, 3015 then you pop to that and… So let us go and search for 3015

and 3010… 45 and you also see 3012 getting 42 yeah… Now let us do the next one pop temp

6, Temp is an array as you see temp will always start from 5 so now that 510 which is on the

top of your stack should go to. The base address of temp is always 5, 5 + 6 is 11 so into the

11th location 510 should go on, let us see whether it is going, so on the 11th location in the

RAM you get 510 right and then the stack actually gets stopped.

So the difference between the other things that we have seen like pop that, pop argument, pop

local is I go to the location, from there I get the base address and then I add that base address

to the index and then push for pop to that from that. But here when I say temp, the base

address is already given so that is always 5 for temp so I just add 5 with that 6 so I need not

do additional memory access to find the base address, base address is by default 5 right. Now

push local 0, local is 300 so what is there in local 0 that is 300 we have 10, in location 300 we

have 10 that 10 will now get pushed into the stack and the stack will now become 256, let us

see whether it is happening… that is 3010 that + 5 is 3015 so that in 3015 there is 0 right,

sorry 3015 currently has 45, now that 45 has to get you know pushed onto this stack right,

pushed that + 5, 45 essentially has to get pushed up right, 45 gets pushed up.

Now we need to do add so this 45 + 10 should become 55 and the stack pointer should

become 257 now, let us see that is happening… yes. Now I will say push argument 1,

argument 1 is 21, argument one is 401 right 401 has 21 the base address for R is 400 so 21

essentially comes here. Now I do was abstraction of X - Y so this is X is 256, Y is 257 right,

so 55 - 21 should essentially become 34. This segment is total 3000 so I have to push this

value 34 to 3000 + 6 = 3006 sorry whatever is there in 3006 which is 36 will now get pushed

to a stack, 3006 had 36 right and again I am pushing the same this + 6 another 36 I am

pushing. Now I am abstracting these 2, first Y, second Y, I am adding these two I am getting

72, again I push it back into the stack, now I am subtracting these 2; 34 – 72 that will give a

me – 38.

(Refer Slide Time: 42:11)

 Now I am pushing temp of 6, temp of 6 is 510, please note here you are seeing that 510. We

are adding that – 38 + 510, 472 should come back and that is end of this code. So I am going

through this very slowly because we try and get to understand how the intellectual machine

works. We have to do two more codes here, so please bear with me for this, this is pointer

test, so we will again set this up this as 300, this has 400, 3000, 3010, okay. Now push

constant 3030 it is gone in, your stack pointer has become… Pop this to pointer 0 so what is

pointer 0? Pointer 0 is the value of the base address of this, please understand this we have

been explaining in detail earlier but we will concretize that explanation.

Pointer 0 is nothing but base address of this segment, pointer 1 is nothing but base address of

that segment okay. So when I say pop pointer 0 that means whatever is there on the top of the

stack that is 3030 should become the base address of this, the base address of this is stored in

3 so 3 location 3 should now become 3030, let us see if it is going to happen… Yes look at

the animation, yes it is going to become 3030 and the stack is now popped off. Now push

4040, now if I say pop pointer 1, the base address of that should become 3040 let us say it is

going to happen yes that becomes 3040. Now pushed constant 32, pop this to what is this

now? 3030 + 2 is 3032 into location 3032 write 32 so 32 will be written into 3032, so now we

can see search for 3032 you will get 32 okay.

Push constant 46 , push pointer 0, push constant and pop that 6 right, pop that 6 will become

46 that is 3040 so 3046 will get 46 yes. Now we will say, push pointer 0, pointer 0 is the base

address now 3030 will be now pushed into the stack, 3030 will get pushed into the stack.

Push pointer 1 3040 will be… Pointer one is the base address of that that means pointer 1 is

always 4, pointer 0 is always 3, so whatever is the content of RAM location 3 will go to the

stack. Now I will add this so this will become 6070, now the stack is now having only one

element now push this to, what is this? This 2 has 32, this is 3030, this too is 3032 and it has

32 right so 3032 will now go into the stack.

(Refer Slide Time: 46:15)

Now I will subtract this so this will now become 6038 and push that 6 that is now 3040 so

3046 I will push, whatever is there in 3046 I will push, in 3046 we actually have 46 that 6 we

have 46 as you see okay so that 46 will now get pushed. Now we add these two, this will give

you 84 6084 and that is it okay. And the last program that we will feel before the wind up, if

you are feeling bored but still bear with me but please understand this because anything tough

will come with a pinch of salt, now you need to have lots of patience to understand and take it

forward so static is very-very important.

So where will the static segment start? Your assembler normally starts assigning variables

from 16, if you remember if it finds some variable it will start, everything else is in the stack,

what will be normally variables if they are actually local variables, they will be in the local, if

they are arguments they will be in the arguments, other than local, argument, etc, the other

variables that are not there or not map to local and argument, they are all going to be static

variables and their assembler for all the variables that it sees right, it starts locating locations

from 16, etc right.

So so in this case also we will assume that so let us see what is going to happen in this case,

first we are pushing 111 then 333, then 888 now I said pop static 8, so where will static 8 do,

let us see what is going to happen. So basically this should have gone to location 23 it is

going to 24. 16 so it is that assigning from 16, 15 will be static 0 so 8 variables so it goes to

20 so all the static variables you start assigning from 16 onwards okay so so essentially this

goes there. So when we are doing the translation, we will just leave it as that variable name

some will give a variable name because automatically the assembler will do this allocation,

so when we do the translation we need not do the allocation fall static variable, we will just

say some variable name and automatically the assembler will do assign this say 16 to this

thing right.

Similarly, pop static 3 so 333 should go to 19 yes 19 got 333, similarly static push static 3 so

333 the pop static 1 so 17 got 111 right and now push static 3 so 333 should get into the stack

and push static 1 so 111 should go there and then I do subtraction so 111, 333 is X remember

that so 222 should be on top of the stack, and top of the stack again goes to 257 because we

popped those 2 values and push this. Now push static 8 it is 888, now I do an add and it

should give me 1010 yeah good.

So what you have understood so far in this thing, thanks for your patience I think we have

now understood very clearly how these stack arithmetic and memory instructions work right,

now we will quickly go into now we are going to translate these instructions.

