
Foundations To Computer Systems Design
Professor V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module 6.1
Virtual Machines-What and Why?

(Refer Slide Time: 00:17)

Welcome to module 6.1 and in this module will talk about virtual machines, virtual machine is

chapter 7 of book, I hope you have purchased that book, there’s any copy please do purchase that

book its worthwhile and that will be a good reference not only you will enjoy that right. So now

whatever I am going to cover is part of you know the chapter 7 of that book. Now virtual

machine, why virtual machines? So I have an high level language in our case it is going to be

called Jack which is slightly (())(00:53) form of Java.

Now already I have my Hack which is my hardware and that had a machine language for which I

have assembler also now, convey ping from HLL directly to this machine language is a

nightmare right, it is going to be a nightmare so that is one of the reason we put one more level

which is a virtual machine meaning I am not going to make a hardware for this machine but I am

going to define one more level and this machine will have an input language and it will have an

interpreter which will convey it into an output language and what is that output language?

This will be the assembly language or whatever that dot asm files that you see. Assembly

language mnemonic. Once we get this assembly language mnemonic which assembly language

hacks assembly language? Once you get this assembly language mnemonic I can use my

assembler to make it into binary and execute right. So (there) now we understand more of this so

Jack is a language that as a compiler that compiler will compile it into the input language of youe

virtual machine. Now there is an interpreter which will take the input language of their virtual

machine and convert it into an assembly language mnemonics and then the assembler will take it

and make it into a machine binary and execute.

This I have been explain it again I am explaining it for sake of clarity. So what we going to do in

this particular module? We define what is the input language for the VM? And now you define so

this input language say will have something like 10 instructions or 10 now we can’t say I don’t

want to say instructions then commands and each of this command each one of this command I

should now translate it into a assembly language mnemonic of hack. So for each of this

command so let me say C1, C2 or C0, C1, C2 to C9 I will get a routine which will be in

assembly of assembly mnemonic of Hack.

So for each of this command I will get an assembly language (())(03:24) so C0, C1 to C9 right

and this is what we are going to look here. Now what is the biggest advantage of having this

virtual machine?

(Refer Slide Time: 03:40)

Is that I could have several programming languages PL1, PL2, PL3 till PL n now I have one

virtual machine, from this virtual machine I could have several interpreters which can give it for

hardware architecture 1, hardware architecture 2, hardware architecture 3 (K) ok and then I have

an assembler which will take it to the actual hardware ok.

So multiple compilers running on multiple architectures multiple languages supported on

multiple architecture this is what the virtual machine basically ensues I could have some

language, so what it means to invent a new programming languages? This is some PL new and as

planned as our complier which will make it into this virtual machine then that can be program of

PL n can execute on all this architecture you get it.

Similarly what is means to now introduce a new architecture so this is one (())(05:18) of the

story. Suppose I am putting a new architecture H of n right and if suppose I am H of new

suppose I am getting assembler for this and interpreter for this which will convert so I have an

assembler and a interpreter which will make from VM it will you know interpreted into assembly

right, so the moment I have that interpreter that means all this languages PL1 to PL n can

basically execute new architecture.

So this means this basically his approach of having virtual machine will basically allow you to

start inventing new-new architectures and use all the existence of tour on top of it with somehow

lot amount of is right and similarly keep inventing new programming languages and keep and

make it executable and all the existing architectures very quickly. We suppose this virtual

machine did not exists and I make a programming language and then basically I have to do for

every architecture another compiler which will make it totally useless right it is impossible right.

Similarly when I put suppose this virtual machine (())(06:38) I create a new what you say a new

hardware then for every programming (new hardware) for every programming language I need

to have a separate software stack for it. Now all this things are avoided by the virtual machines

and that is the power of virtual machine. This concept was it is a old idea in 1970’s it started but

it came back in full spirit in the 1990’s when (())(07:08) started using this as a concept right so

now what we will do in this particular thing is that we basically understand this virtual machine

in it proper perspective.

(Refer Slide Time: 07:29)

The virtual machine that we are going to use is a stack based virtual machine. Stack is a data

structure where it supports two command PUSH and POP in addition on this this is basically data

instructions into the stack I can push an element I can pop an element and there is always

something called the stack pointer which will point to the top of the stack and I so let us do

simple operation so there is the stack there is a stack pointer initially it will be pointing to zero,

let me say this are all the memory locations.

Stack is implemented on your data memory right so 0, 1, 2, 3 is there suppose I say push A so A

will come here and here sorry suppose I say push A so A will come here and here stack pointer

will now point to this. Now I say push B now A will come here B will come here now a stack

pointer will point to this. Now I say pop then what will happen? This B will be coming out so it

will return a value B will come here and your stack pointer will now start what? You may erase

this or not normally we erase it for security reasons ok.

So now when I say pop then the top most comes out, so B went last in and it came out first so

this stack follows what you call as the LIFO policy that is last in first out policy. Well in addition

I this stack I can do some operations so like for example I have pushed 7 I have pushed 6 and the

stack pointer is here I can say add, what will add do? It will pop the first two top two operands or

let us say pushed 1 also here 10 here and 9 stack pointer is pointing here when I say add this will

pop 10 and 6 it will add it and again push it so what will happen is at the end of this this will be

7, 10 and 6 are popped and again it is added 16, so 16 goes here and then I have SP.

So this is how I do what we call as stack arithmetic. Your entire virtual machine is based on the

stack so will have stack data moment and will have what you call as stack arithmetic right in then

we can also do some simple operations like you know compare.

(Refer Slide Time: 10:50)

So I can say if X is less than 7 or Y equal to 8 right so I will say push X push 7 ok less than push

Y push 8 equal to or this is statement complete so what will happen is initially stack is empty

now I have pushed X then I push 7 so this is done then I say less than the stack pointer will be

pointing here ok.

Now when I say less than the second bottom is compared with the first bottom so X is less than 7

and what will be this less than operation do, it will pop the first two operands first top two in

compare the bottom with the top like X is less than 7 right and if it is really less than 7 it will

push 1 otherwise it will push 0, so let me say X is 4, X is 4 and Y is 8 ok so now this will be 4

now the moment less than executes 7 will be compared with 4 will be compared with 7 for less

than this 4 is less than 7 so what will happen is this two will be popped out and the answer will

be written 1, 1 means true and the stack pointer will be there.

So what less than will do it will popped down the two entries compare them in that order bottom

in the left hand side and top on right hand side because less than is not a (())(12:45) A less than B

is not B less than A right so we have to be careful of which is on the left hand side and which is

on the right hand side and then the answer is if it is true 1 will be pushed if it is false 0 will be

pushed and say if just for to make life little (())(13:02) now I push Y now when I push Y what

will happen? Stack pointer will go up now Y is equal to 7 then I push 8 right that is a constant so

now the stack pointer is now here.

Now I say equal to so 8 and 7 are popped so this will pop 8 and 7 and it will compare them, so 7

is not equal to 8 so it will put 0 so the answer is 0 and that will be pushed so at the end of this

you will have 1,8 and 7 are ofcourse popped and now 0 is pushed and the stack pointer so this

will be the status of the stack after this. When I say OR, OR again will take 0 and 1 and I will do

an OR and the answer will be here 1. So this essential expression basically gets evaluated.

So this is how I can meaningfully (())(14:01) to do certain logical comparisons also right so this

is all this so our virtual machine is going to be a stack based machine and now we will see in the

next module what is the input language to this virtual machine and for every instruction in that

language will have something like 10 instructions we will see what is the equivalent assembly

mnemonics of hack ofcourse we have an assembler so we can afford to write it in assembly

mnemonic and take it further right. So we will now meet again in module 6.2, thank you.

