
Foundations to Computer Systems Design
Professor V. Kamakoti

Department of Computer Science Engineering
Indian Institute of Technology Madras

Module 5.6
Project 06

Demonstration

So welcome to module 5.6 and we will be doing a demo of you know project 06. We have

written an assembler so let us just look into the directory of Project 06 so I am opening up

this assembler.

(Refer Slide Time: 0:47)

So go to the tools and open your assembler here as I am showing here then then let us go to

the projects so when you say this add so I have written the assembler, this add.asm will be

already available to you as you see here, this is your add.asm sorry it should be in WordPad.

This is your add add.asm, now we can see add.asm, I have generated this program that I have

written the assembler has basically generated this add.int and there you will see you know, it

is this notepad, we have to see the WordPad yeah right.

(Refer Slide Time: 1:51)

Now all the comments are removed here so you can just see add, add was basically having

the add had the comment and all those things are removed in this add.int so I have

recommended add right, and then this as create as add.hac right so that again we will so that

again these are 6 binary comments. Okay now how do we do this? So there is an automatic

assembler that is provided as a part of your thing. Now in this automatic assembler and that is

this will do the assembly for you what we do is first we load the file so I wrote add.asm, I

also go and load the comparison file, this is add.hac that you have generated as a part of your

family program.

(Refer Slide Time: 3:14)

Now we will make this this assembler is already tested golden reference, now we will ask it

to assemble so I type this so it is doing one by one and say yeah it is done, right. Now let us

go and do something more, I can load another file now this add is, there are multiple

directories in this 0 fix, we have added max, pong, etc, so let us take some max. Max has one

with label and one without label, let us take this one with label, I have loaded the source file

now I can also load the comparison file for max again root comparison file, now we do this,

this double arrow will automatically do for you. Add.not is 0 so instruction by instruction this

is assembling

(Refer Slide Time: 4:05)

Note that output 1st was not… This is just a label and the comparison success so you can

check this. So now next thing is let us go to some other file here like pong, pong is a very big

program so let us take ponG with labels and let us take the comparison file again pong.hac I

have created this, now let us do and this will take an enormous amount of time, there are

27,000 instruction so only tomorrow will finish. So now how we can do this? For running

there is something called fast translation that is all it is done. so I will again do that. Note the

source file, it is pong, load the comparison file which is again pong.

(Refer Slide Time: 5:13)

Now go to this png and say fast translation, there are 27,000 instructions and it worked, right.

This is how you verify so you write the assembler take all the dotasm files in your in add,

max, pong rect there are asm files, now you run your assembler on each of these files and that

will give you this hac and intermediate and hac files similarly, for everything and then now

you open this assembler which is part of your tools right. There is an assembler inbuilt

assembler that is given to you, this is part of the tool and then go to each one of these files

you load the asm files, you load as your source file and you also load a comparison file

which is the file that you have created and then you go and run and ask it to you no fast

translate or translate the base and see whether this matches, and this is the way you validate

your assembler.

And if it works here, I think your assembler is perfect, so happy assembly and by the end of

this I think you should spend 2-3 hours to get this assembler pucca, I can easily do that and

that means you have written the 1st system program for your system stack, right. Now you

have made a machine and you have made that machine more sensible by saying now at least I

can give you a mnemonics environment. You can write assembly programs in pneumonic,

this is more human readable and I have a software which will now convert it into binary and

which can run on my machine. So this is the first step, I hope you are excited about this and

now we will go into the next stage of understanding what the virtual machine is, right.

Understanding a virtual machine is very interesting and I hope you will enjoy doing it.

So before we go to module 6, my request is please complete project 6; the assembler so that a

complete understanding of the assembler is very important for you to appreciate what is your

machine’s work, thank you.

