
Foundations To Computer Systems Design
Professor V. Kamakoti

Department of Computer Science and Engineering
Indian Institute of Technology Madras

Module 5.4
Assembler: Pass 1

(Refer Slide Time: 0:16)

Welcome to module 5.4 in this 5.4 we will talk about the coding of Pass 1 of the assembler.

So what is required as we see here is that, so in your system you just enter assembler my

prog.asm now what we will do is in Pass 1 this will create an intermediate file called

myprog.inter that will be taken again as input by Pass 2 and it will create your myprog.hack

which is the 16-bit binary.

So this is the 2 pass assembly stages, so what we need to do as a part of Pass 1 already we

have explained that it means to populate the symbol table. It has to look for symbols and for

all the symbols that are seeing there, it needs to find a mapping to an address and that address

is what the Pass 2 will do to basically get the binary, right?

So what will Pass 1 do, it will read line by line the code first it will initialize symbol table

what is initialization of the symbol table we have seen in module 5.3, right? So s there will be

some 23 entries we have to do that and the remaining things have to be null and minus 1 all

those things we have seen. Now every line what it does, this particular Pass 1 will take your

myprog.asm file and it will read every line.

And in that line if there are comments it will remove first it will remove whitespace, suppose

I have say D equal to A plus M lot of whitespace still your system has to allow this, right? So

we will now make it as D equal to A plus M removing all the whitespaces that are you know

at this bar, this bar, this bar, this bar. So we now remove the whitespace after removing the

whitespace you just have to comment.

Now at that point you could have and after you remove the whitespace now you have to see if

it is a comment or not, the 2nd thing is to remove a comment. So comment there are 2

challenges one thing is I could start with a comment everything is a comment that, in the

assembly. Then you ignore that entire line as I told you comments have to be ignored there is

no binary equivalent for a comment, okay.

So we just ignore it, the other thing is I could have D equal to A plus M and I could have

something like updating memory. So when we do this what will happen is, when you you

know remove all the whitespaces this would have become D equal to A plus M//updating

memory, right? So you is just there where comment the first 2 characters itself would be //and

we could because we have removed all the whitespaces then you can ignore the entire

comment.

But in this case I will be just scanned till D equal to A plus M, the first time I see the 2 double

/ just do not pass anything beyond this and so we are basically reading a string, what you

read? You read line by line and put it as a string, so you just make, so what would have

happened? let us say this is a pass comment, reading, so what would have happened here is.

This will be pass comment of 0, 1, 2, 3, 4 D equal to a plus M, right? There 5 characters

already there then the 6th and 7th you see it is a comment just you make the 5th character as

the null character. So the string and here D equal to A plus M, alright. So that is something we

need to be very careful about comment, okay. So you remove whitespace you remove

comment.

For every line by line you read remove whitespace remove comment, now the next thing is

now we have to find the type of comment. Now since I’ve removed all the whitespaces and

also the comments i so if I say the first character is going to be this parenthesis then

obviously this is going to be a label comment and what you call as an L comment. So that is a

label that means for Pass1 it is very very important.

I have to take whatever symbol is there within that label and try to add the entry and do,

right? So that’s an L comment, now to make this a little bit robust I could have this loop,

before we go there, so this is one L comment another thing is that the first character, since

again, so look I have removed all the whitespaces, right? If the first character is at that you

have read then you know that this is a A comment.

Then you go and check whether this is a constant, so whatever is following till the end of line

in this particular string please check if it is going to be zeroes and ones digits than it

essentially becomes a constant. If the first thing start with an alphabet or anything other than

zeros and one, 01 anything other than a numeric number then you know that this is again a

symbol.

So then you have at symbol now we have to go to that symbol table and see if add it and do

whatever we have described earlier, right?

So now we know if the L comment I know if it is an add comment with a symbol I have to

take that symbol and keep adding it to the symbol table. Now the last thing is that to make it a

little more robust I could have something like this.

(Refer Slide Time: 6:38)

I could have a symbol say loop and then I could have some at right? At i I could have loop

and I will have at 100, I will have loop and I will have some D equal to D plus M or

something, so I could have an L followed by an A which has a symbol, A also has a symbol or

L followed by A with as a constant or L followed by a C type instruction, right? You know

where we have A type and C type instructions, right?

So in this case again since we have removed all the whitespaces etc this will be looking like

loop immediately I will have an @ and then some or I will have loop and immediately I will

have a a(())(27:33), right? So this also to just make your you know assembler little more

robust we introduce this so then basically we need to understand this loop this symbol and

then if this is a symbol both of these symbols have to be updated in the symbol table.

And in the symbol table you’ll find whether address is already entered with address minus 1

already entered with some address already fixed, so these are the things. So this is how we

resolve the symbols as a part of Pass 1. So after doing this line by line and after we reached

the end of the file, alright so we basically go and check the last thing that we see is that there

will be some more symbols for which we have not assigned address and those are the non-

labels those are the data, right?

We have already seen in module 5.2 and those data points we basically go and put address

starting from something like 16 or 17, we just put those addresses and fill it up, right? So this

is what the basic table is. This is what the basic Pass 1 of your assembler is. So at the end of

this you will have a uncommented or comment removed D commented that’s correct word, a

de commented de whitespace file where in all your comments and whitespace removed.

You give an input .asm and you get this along with that, so this is what this is the Interfile, I

said myprog.interrite.

(Refer Slide Time: 9:24)

That interfile is nothing but this myprog.inter that we are seeing here is nothing but all your

comments removed and this plus in addition your entire symbol table is filled all the symbols

that are used in that program has an associated address. So this is Pass 1of your assembler

and very quickly I will go through the code, so that you get an understanding.

(Refer Slide Time: 10:05)

So the one of the important thing is we said, right? As we see here I want myprog assembler,

myrpog.asm, so there is the name of the file is basically given as an argument in your

command line, so that were some very interesting C construct, I hope any of you know that,

there is something called argc argv if you don’t know this it’s very important that you know

this, so please go to one of our Google sites or Wikipedia and you will find a lot of tutorials

on this.

So this is the way you accept a command line parameter in the C programming.

(Refer Slide Time: 10:59)

Now then you go and you initialize, so one of the thing that we need very quickly as you see

here, we need to have an instruction number, we need to have a line number, you have

already seen why we need an instruction number, so right? In the module 5.2, when we look

at a symbol, when I look at a label with parenthesis immediately I have to assign the

instruction number plus 1 for that, right?

Then only that’s how I saw the symbol, right? So we need to maintain the instruction number

and line number here.

(Refer Slide Time: 11:30)

And what we do here is that, we read one command after command that we call as next

command, the past command is nothing but all your comments removed and your whitespace

removed your past command is all your whitespace removed here, right?

(Refer Slide Time: 11:47)

So I define these 2 things and you know this is called a buffer, so I have something like 80

characters line, so I put a limit on that. Now I initialize the symbol table, so I put all the 23

entries etc as I…

(Refer Slide Time: 12:06)

And now I’m going to the most important thing is I’m reading one by one the commands one

by one after that and I use this function called fgets to do that.

(Refer Slide Time: 12:18)

And in this part of the code I’m removing all the white spaces and I am also removing all the,

if there are comments inside a line I’m using this while loop to remove all the comments, so

the and then I’m finding the comment type, it can be an L command or L and A command or

L and C command, right?

(Refer Slide Time: 12:43)

And then what I do is, if it is an L command or any of these commands I basically extract the

symbol and I try and add into the symbol table, right? I add that symbol into the symbol table.

(Refer Slide Time: 13:02)

And similarly if it’s L and commands then I basically have to you know after the symbol after

the… So L and A command will look like one symbol with parenthesis and then immediately

you’re a command will so… So I go to that path and after that @symbol I go and find out if

this again another symbol, so @I can have a symbol, right?

So I go and find that and that if it is a symbol again I do this add entry into the symbol table.

(Refer Slide Time: 13:43)

The last is that if it is just an A command, right? If it is just an A command I just basically see

after the @symbol is the character between 0and 9 if it is not between 0 and 9 than it is a

symbol, then again I do the same thing as you have seen, right?

(Refer Slide Time: 14:15)

So after finishing all these things this is very very important that I scan every entry of mine

Max entries of my symbol table and if I find that one of the address is minus 1 but my entry

is /0 is not null, it is not null. So I have a valid string null is but the entry is minus 1 this as I

have explained earlier could happen in the case of what? In the case of symbol data points,

right?

Like @ I, @ which are non-symbols one, so those things I started assigning address as

starting from 16, right? And I keep on implementing. So this is end of Pass 1, so where I

close the input file and the interfile. Now I have got an interfile what I write into the interfile

is the completely de commented de whitespace thing, right? And this is Pass 1 of the code.

So in the next module we will see how we are going to go about Pass 2.

