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So, now, we will  go to the next module,  we will talk about some success stories on

ImageNet  right.  So,  this  is  the  challenge  which  actually  made  convolutional  neural

networks very famous back in 2012. 

(Refer Slide Time: 00:23)

So, they are going to look at some algorithms in fact, 2 more hopefully today. 



(Refer Slide Time: 00:29)

So, this is the story right.  So, there is this  challenge or competition called ImageNet

Large Scale Visual Recognition Competition right that is what ILSVRC stands for. And

this was a data set created which had 1000 categories, it actually has 10000 categories,

but in the competition we use only thousand of those categories yes. 

So, 1000 plus 1000 I think, the roughly the data set size is 1 million. And so, that is what

was used for training a classifier. And I am talking about 2010, the pre deep era right I

mean so, of course, deep era networks existed at that time, but the participants and these

challenges and that time were relying on the classical machine learning approaches. So,

what was that approach, take the image. 

Student: (Refer Time: 01:16) feature. 

Extract features which features?

Student: (Refer Time: 01:20).

Predominantly.

Student: Sift and hawk.

Sift and hawk features were the predominant features at that time and then you train a

classifier on top of that. And then, you use things like on symbols or better handcrafted

features and things like that certain more tricks on top of that. So, that, with that on this



data in 2010 the error was 28.2 percent;  that means, if I give you a test set of 1000

images you will make 282 errors on that right, that is what this means. Then, in 11 there

was still some progress, this was again pre deep era and there was this error came down

to 25.8.  And then,  in  2012 there was this  AlexNet,  which was a  deep convolutional

neural  network  applied  to  the  task  of  image  classification  and  it  gave  a  dramatic

reduction right from 25.8 to 16.4. 

And was I think absolute; in absolute terms 8 to 9 8 to 9 percentage better than the best

system in that competition that year, so that was in 2012. In 2013, there was further

improvement  on  a  different  architecture  for  doing this  and  that  give  a  further  error

reduction of 11.7. Then in 2014 there was VGG net. So, these are all 3 that we are going

to see today, which give a further error reduction of 7.3. Then, Google decided to join the

party and they make it 6.7 and as I have said before then afterwards Microsoft got crazy

and  they  brought  it  out  in  3.57  and  this  is  when  we  started  making  claims  that  a

convolutional neural network has become better at this task than humans right. 

Because, if you show these 1000 images to a human, even a human is bound to make a

3.5 percent more than 3.5 percent error; that means, because some of these images would

be blurred. So, I would not be very sure whether, this is a bulldog or a different type of

dog or something like that right. So, I even a human cannot really recognize it correctly

and that  is  the whole hype around, how convolutional  neural  networks  have beating

human level performance on this particular task right. 

And let us see so, this was all the shallow pre deep era. The first architecture was 8 layers

and  I  think  this  was  called  a  varied  no  this  probably  not  this  yeah.  The  second

architecture was also 8 layers then, we had 19 then, 22 and then 152 right. So, that is

how the progress has happened. So, these are all the architectures that we are going to

look at today or at least some of them today and the rest maybe tomorrow.

 So, we will  start  with AlexNet and I am going to tell  you the exact architecture of

AlexNet, what was refused, what did it actually use. 



(Refer Slide Time: 04:02)

So, the input was an RGB image. So, it had a depth of 3 and it was 227 crossed to 27 that

is what the data set input was, all the images in the data set were to 27 cross to 27 cross

3. So, the first thing that they did was they decided to use 96 filters, can you read that

anyways I will say it outright. 

So, they resided to use 96 filters with a spatial extent of 11 cross 11, a size of 4, and

padding of 0. So, the moment you see size stride of 4, what do you know is going to

happen, there is going to be some shrinkage, roughly by how much one-fourth right. So,

now, can you compute these 3 things, what was W 2, what was H 2 and what was the

number of parameters in this layer. We will do it for a few of these layers and then I will

just  rush  through  that.  So,  what  is  W 2  going  to  be,  you  have  already  done  this

computation right, the exercise that we did was exactly this computation. So, there was

55 cross 55 and what is the depth going to be, I want everyone to say that.

Student: (Refer Time: 05:15).

And what is the number of parameters.

Student: (Refer Time: 05:20).

96 into.

Student: 11.



11 into.

Student: 11.

11 into 3, do not forget the depth, the depth is 3 here. 

(Refer Slide Time: 05:31)

So, that is the number of parameters that they had in this layer, 11 into 11 into 3 into 96.

Now, what is the next layer going to be, a max pooling layer. 

(Refer Slide Time: 05:42)



So, they had a max pooling layer, where they used a 3 cross 3 max pooling; that means,

you are going to pick up max from a 3 cross 3 grid. And the stride was 2; that means we

are going to get half the output. And now can you tell me, what W 2 H 2 would be

roughly? Half of 55, 55 right so, 27 27. 

(Refer Slide Time: 06:02)

And what is the number of parameter is going to be? Do not be lazy, everyone be say it. 

Student: 0.

0 right so, that is the max pooling layer. 

Now, what is the size of your input volume at this point?

Student: 27.

27 cross 27 cross.

Student: 96.

96 as opposed to the original input which was 227 cross 227 cross 3, so as you keep

progressing, your width and height is decreasing, but your depth is increasing because,

you are using more and more filters to capture more and more patterns in the images. 



(Refer Slide Time: 06:37)

Now, so you have 27 cross 27 cross 96 then, they decided to use 256 filters, each of size

5 cross 5 with a stride of 1 and padding of 0, is it right? So, how many parameters do you

have now?

Student: (Refer Time: 06:53).

256 into. 

Student: 5 into 5.

5 into 5 into.

Student: 96.

96.



(Refer Slide Time: 07:00)

So, that is the number of parameters that you will have and the size since would decrease

only by 1 right because, you have a stride of it will decrease by 2 because, a filter size is

5 and you have a stride of 5. 

(Refer Slide Time: 07:12)

So, these are the number of parameters, we had 0.6 million parameters in this layer. What

is the next layer going to be? Pooling. 



(Refer Slide Time: 07:20)

So, you do a max pooling, again you do a 3 cross 3, you do a stride of 2, so your width in

height is going to decrease, the depth does not change. Remember in max pooling, the

depth does not change because the max pooling operation is for feature map, it is not

across the depth fine. Then use a 3 cross 3 filter and 384 of those. 

(Refer Slide Time: 07:40)

So, how many parameters would you have?

Student: (Refer Time: 07:43).



384 into 3 cross 3 into 256, the depth. 

So, now you guys get it. So, I will not bore you anymore. 

(Refer Slide Time: 07:51)

 And then you have a convolution operation again, which is a 384 convolutions each of

size  3  cross  3 and so many parameters,  followed by a  convolution  operation  again,

followed by a max pooling operation, then, followed by a fully connected layer.

(Refer Slide Time: 08:05)



So, what would I do to this 256 cross 2 cross 2, I will fatten it.  So, I will  get what

dimensional output. 

Student: 1024.

1024, 256 into 2 into 2, so this 1024 dimensional vector I am going to fully connect it to

a 4096 dimensional vector. How many parameters? 4 million right, 4 into 10 is to 6 right

so, roughly 4 million. 

(Refer Slide Time: 08:30)

 Then  you have  another  4  million,  another  4096 vector  fully  connected,  how many

parameters? 

Student: 16 million.

16 million then, you have the 1000 classes that you are interested in right so again fully

connected. So, you get the full architecture. Anyone has any questions? No one wants to

know why this particular configuration among all the possible configurations, why not

10 layers, why not first 8 cross 8 filters, why not 9 cross 9 filters unfortunately, no one

knows. [laughing]

Student: (Refer Time: 08:59)

So, this I mean see this what this is what would happen right. Now we get into something

known  as  hyper  parameter  tuning  right.  So,  what  are  the  hyper  parameters  in  this



network, the kernel size is and the number of filters right. So, you would have tried a lot

of these things, evaluated on the validation set, seen which one gives the best accuracy

and then chosen right. So, that is probably what would have happened, but there is not

enough insight into how this particular architecture came up. 

Apart from some things right that 3 curves 3 neighborhood sounds reasonable. Initially,

when you have the full image, you use larger filter sizes because, you want to capture a

lot of things there but, once the image has shrunken you use smaller filter sizes. So, those

are some rational decisions which look reasonable but, why these 3 convolutional filter

layers back to back instead of convolution max pooling convolution max pooling and so

on right.

So, the some of those things are not clear so, just in case you are wondering, do not

wonder, this is just the architecture, this is known as modestly named as AlexNet. So,

that is [laughing] yeah and so I said that this has 8 layers, but you clearly see more than 8

layers here. So, why did I say that has 8 layers, which are the layers we are not counting?

Student: (Refer Time: 10:10).

Why? 

Student: (Refer Time: 10:12).

Because, they have no parameter right, so when you count the number of layers you only

count  those  layers  which have parameters.  So,  you have  5 convolutions  and 3 fully

connected layers. 



(Refer Slide Time: 10:21)

Then, so the total number of parameters in this network is 27.55 million parameters and

at this point I will and; obviously, you notice that most of these parameters were there in

the fully connected layer. So, you had 4 million here then, 16 million here and then again

4 million here right. 

So, roughly 24 million of the 27 million parameters were there in the fully connected

layer, you see that skew in the number of parameters. 

(Refer Slide Time: 10:50)



And I will just look at the fully connected layer again. So, the last max pooling layer

actually  gave  you  a  256  cross  2  cross  2  output,  you  just  flatten  it  to  get  a  1024

dimensional vector and then you connected fully to the 4096 vector right. So, that is what

I mean by a fully connected layer. Why do you move max fully? 

So, the reason for that is basically, to shrink the size of the image right because, after that

if, if you keep working with this size right then, the number of parameters is going to

really blow up, a by using a larger stripe yeah both of them are feasible right. So, now,

see from here remember that we had the original image sizes 227 cross 227 and by the

end we were just left with 2 cross 2.

And then adding a fully connected layer on that makes sense right. If I had not done this

shrinkage throughout either by increasing the stride of the convolution layer or by doing

max pooling right then, you would have left with something of the order of 200 cross

200 here and then, you have to do a fully connected on top of that is just infeasible right.

It just throws away all the hard work that you have done by doing weight sharing and

sparse connectivity right. So, that is not feasible. 

There  are  also  papers  with  say, which  I  think  it  is  titled  fully  convolutional  neural

network which does not have any max pooling layers and they show that that also works

fine. In fact, when we see VGG in net, we will see that it has back to back convolution

layers and very few max fully layer right. So, these are all things which people have

trained. 

Not so many years, 2 years the challenge came out in 2010 and in 2012 this was used

right. So, it is like not really a large gap right. And if, you read the original paper they

had to do a lot of tricks to actually make this work, it was not as simple as I am showing

it. Of course, now with all the stability which comes from these platforms, tensor flow

pytorch, you can probably just go and implement this as it is and you should be able to

reproduce the results but six years back that was not the case there was a lot of hard work

involved in getting this too work. And they this was also the paper, which introduced the

reLU non-linearity in the context of convolutional neural networks right. So, they had to

change from sigmoid or tan edge to reLU.

 A lot of these small small things which they had done And at that time it is also not

possible with the existing hardware to train this on the given GPUs that you had at that



time. So, they had to do some splitting across GPUs and so on. So, it was not as simple

as  it  is  today  with  all  the  hardware,  as  well  as  API  developments  or  platform

developments around this right. So, probably that is why it took 2 years to yeah sure. 

So, each of these things, so after you do the convolution operation, you pass it through

the reLU non-linearity. So, what does that mean is that, the convolution operation gave

you a feature map, every entry here was just a weighted average of the neighbors right,

you take this entry or rather you take this feature map and create a new feature map

where every entry here is the sigmoid of every entry here. Do you get that or not sorry

sigmoid, some non-linearity and they use the reLU has the non-linearity. So, you do get

everyone, gets this. So, all the convolution layers are followed by a reLU non-linearity

layer.

So, you get this volume, pass it through the reLU and get a new volume, but, I have just

shown that as a single operation. It is before pulling so this was the fully connected layer.

So, now, we look at the next architecture which is ZFNet.

(Refer Slide Time: 14:05)

Now, I am going to compare ZFNet with AlexNet. So, on the top you will see AlexNet,

on the bottom you will see ZFNet ok. So, again the input was the same, 227 cross 227

cross 3. Now instead of 11 cross 11 filters ZFNet decided to use 7 cross 7 filters and their

rationale was that you do not need such large neighborhoods, you do not need as small as

3 cross 3, but probably you need at least as much as 7 cross 7, you do not need 11 cross



11. So, that is the first change that they did and that would also result in some parameter

pruning right.

Because, the number of parameters now would be 7 cross 7 into 3. So, the difference in

the number of parameters at this layer for ZFNet which is at the bottom and AlexNet

which is at the top, would be this. How many of you get this? So, that is in the difference

in the number of parameters. So, now, the output volume still remains the same, it is 55

cross 55 crossed 96. 

(Refer Slide Time: 15:03)

Then again they had the same max pooling operation, this layer there was no difference

between ZFNet and AlexNet and then after that you had again layer 3 which was exactly

the same as AlexNet. 



(Refer Slide Time: 15:20)

Then layer 4 again the same as ZFNet, afterwards layer 5 instead of 384 filters, they

decided to use 5 12 filters, the rest of the thing remains the same; that means, the size or

the spatial extent of the filter remains the same. So, that again results in some difference

in  the  parameters.  So,  that  is  the  number  of  parameters  that  got  added in ZFNet as

opposed to Alex net. 

And of course, the sorry, the bottom one is a ZFNet yeah that is correct sorry So, in zf

net you had 512 filters as opposed to 384 filters in Alex Net, is it fine. 

(Refer Slide Time: 15:52)



And then, the next layer again instead of 384 filters, they had 1024 filters. 

(Refer Slide Time: 15:57)

Then, again instead of 256, they had 512 filters and then, a max pooling layer then the

same dense fully connected layers.

(Refer Slide Time: 16:02)

So, everyone gets this, this is the difference between the two architectures and this led to

that difference in the error of around 3 to 4 percent is that we have seen earlier.



(Refer Slide Time: 16:15)

So, difference the total number of parameters was 1.45 million and of course, ZFNet had

more parameters because, is that it has these more filters in the deeper layers ok. So, we

go to the last point which is may be more in that VGG net. 

(Refer Slide Time: 16:26)

So, again in the case of VGG Net, the input was so I just want to I will not see it (Refer

Time: 16:41) in. So, the input was again the same, it was RGB cross 227 cross 227. 

So,  this  is  what  the  VGG  architecture  looks  like.  They  have  so  in  VGG  network

throughout ok, wait. So, how many layers this ZFNet have, 8. So, you only count the



pink boxes because, the those has ones which have two parameters. Now, VGG net has

slightly more number of layers but, in all the convolution layers they use 3 cross 3 filters

right, from the beginning they use 3 cross 3 filters So, you have the first convolution

layer then, another convolution layer, another convolution, another max pooling layer

followed by 2 convolution layers, then a max pooling layer, followed by 3 convolution

layers, max pooling just keep adding box is writing just because, you can and then, you

have the fully connected layers. 

So, again there is not much intuition for why 16, in fact, later on someone came if this is

the VGG 16 architecture because, it says 16 layers. Later on some of someone came up

with the VGG 19 architecture, which has 19 layers right. So, a lot of this is data center

even right, so you try your best to get the best possible accuracy on the ImageNet data

and that is the architecture you came up with right. 

But as long as how many of few feel comfortable with what is happening right and I

mean, when I say comfortable, I mean that, you really understand the gory details of

what is happening at each layer in terms of input volumes, output volumes, number of

parameters, how are you going to train this network end to end. Can you see how are you

going to train this. So, you will get some loss here that is going to propagate all the way

back to the first layer right and this propagation is going to happen over some sparse

connections  that fine.  Now, this  is  one very important  point that  I have skipped and

which none of you is questioning. Is everything that is happening here differentiable?

Student: (Refer Time: 18:38).

What  happens to max pooling? Is  max pooling or differentiable  operation? So, I  am

going to ask you this,  how are you just  note this  down, how are you going to back

propagate to the max pooling layer because, you need to see whether the max pooling

layer is actually a differentiable layer or not . So, here I just some statistics about VGG

net; everyone is writing that down [laughing] this perhaps, means I will not ask it 

The kernel size is  3 cross 3 throughout;  the total  number of parameters  in non fully

connected layers is 16 million. The total number of parameters in fully connected layers

is 122 million. So, you see that this fully connected layer is really a problem it like really

hogs all the lime that it has the maximum number of parameters there right. And so and

the most number of parameters are there in the first fully connected layer because, you



have this 512 cross 7 cross 7, you remember then Alex Net and ZFNet, the last layer was

256 cross 2 cross 2, which has definitely more manageable than this layer which has

grown almost 8 times in size, but not even 8 actually 4 into 4 into 2 right, 16 32 times in

size right.

So, that is really blown up the number of parameters in the first fully connected layer. So,

you just imagine the I mean, you have such a deep layer and then you realize that all the

main number of parameters are there in this one particular layer, everything else is much

much fewer parameters or orders of parameters less number of parameter is less then,

this one fully connected layer 


