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Lecture – 11
The convolution operation

So,  why  let  us  start.  So,  far  in  the  course  we  have  looked  at  feed  forward  neural

networks, we have seen how to train them and we have seen 2 special cases of feed

forward  neural  networks,  one  was  the  auto  encoders  for  learning,  representations  or

learning latent representations of inputs and the other thing that we had seen was how to

use a feed forward neural network to learn word representations where we saw this word

to wake algorithm and it is different variants, it was continuous bag of words, skip gram

model  graph and so on.  So,  those  are  all  since  some since  applications  of  the  feed

forward neural network.

And now we will move on from there, though we will look at different type of neural

network today, which is convolutional neural networks and we look at some specific

architectures, which have become popular over the past few years.

(Refer Slide Time: 01:07)

So with that, I will start this lecture on convolutional neural networks. So, in the first

module we will look at the convolution operation ok.



(Refer Slide Time: 01:11)

So, let us see, so, suppose we are tracking the position of an aeroplane using a laser

sensor at discrete time intervals right. So, you have this ok. So, you have this aeroplane,

suppose it is going from say Chennai to Delhi and at discrete time intervals, you are

seeing the tracking the position of the aeroplane right, how far it is from Chennai at this

point right may be it is 50 kilometers, 100 kilometers and so on. 

And now your laser you think that it might be noisy, it might not be giving you very

accurate measurements. So, you would be taking these measurements and say intervals

of course, it is not in practice you would not do that, but just indulge me for the purpose

of illustration that say, you are taking these measurements every 5 seconds or 10 seconds

or something like that. 

Now, since your sensor is noisy instead of relying on a single measurement, you would

probably want to take the average of the past few measurements that you have taken. So,

that would give you a more accurate representation of what the current position is. Does

that make sense like, you are taking multiple measurements and taking averages of those

right and of course, more recent measurements are more important as compared to the

previous measurements right. So, this is suppose at time step t, say this was t minus 5

seconds and this was t minus 5 minutes suppose. 

So  obviously,  you  would  not  want  to  take  give  a  very  large  weightage  to  the

measurement that you are taken t minus 5 minutes back right because, the plane would



have moved by a lot by that time. So, it rely more on the recent measurements and less

on the previous measurements right. So now, the mathematical way of lighting, this is

that you know the positions or the readings that you have taken at time steps 1, 2, 3, up

to time step t, you are interested in the revise estimation of this measurement right. So,

you have taken some measurement at time step t and you want a revised measurement of

that and the way you are going to compute, that is you are going to take a weighted

average. So, w is the weight of all the previous measurements that you have taken right.

 (Refer Slide Time: 03:17)

So, the measurement that you take a t minus 1, t minus 2, t minus 3 all the way up to t

minus infinity and for each of them would have a weight associated with this.

So, this operation right this thing, you can write it as the following operation that you

have a vector of measurements or an array of measurements, which is x and you have an

array of weights associated with these measurements, the farther the measurement from

the current time step hopefully smaller is the weight assigned to that and this operation is

known as the convolution operation right.



(Refer Slide Time: 03:37)

So, you have x which is the input, w is known as the filter and the operation that is

defined as this equation is known as a convolution operation right.

(Refer Slide Time: 03:49)

Look, but of course, in practice you would not do this from infinity right, you would

probably keep a window, you will say I will rely on the previous 6 measurements; that

means, whatever I took at t minus 1 second, t minus 2 second up to t minus 6 seconds

right, beyond that it does not really make sense. So let us see, how this computation



happens. So this weight array so now, what would be the dimension of this weight array?

How many entries would it have?

Student: 7.

7 right 0 to 6. So, 7 entries and this is what my situation looks like right. So, this is the X

the  measurements,  which  I  have  taken  using  the  laser  ok.  So,  I  have  taken  some

measurements. Now, I am at a particular time step and I want to make a revised estimate.

So, I have this xt and from that I want to compute st and the way, I am going to do that is

by taking a weighted average of all these previous measurements. Is the setup clear to

everyone, ok? 

And now this is what my formula is going to be. So, the revised estimate of s 6 is going

to be whatever was x 6 into w 0; that means, the weight assigned to the current time step;

x 5 into w minus 1; that means, weight assigned to the time step minus 1; x 4 into minus

2 and so on. So, you get this ok. So, I have these 7 weights and I will multiply with them

with the 7 previous readings, 1 is to 1 multiplication and I will get the weighted average

and using that I get a revised estimate.

 (Refer Slide Time: 05:29)

Now, I want to get a revised estimate for the next entry, how will I get it? I will just slide

this weight matrix right.



So, I will just slide it by 1, I will again do the same computation and get the revised

measurements. Again for the next entry, I will slide it by 1, slide it by 1, slide it by 1 and

I will  keep getting these entries ok. So, everyone gets the setup,  how do you do the

convolution operation? It is basically, a weighted average of the previous entries fine.

So, here the input as well as the kernel is kind of 1 dimensional right you. So, you have it

is. So, you do not have a 2 D input here, you just have a single dimensional input here.

(Refer Slide Time: 06:01)

Can you use a convolution operation and a 2 D input also? Do you know of any 2 D

inputs? Images, right? So, we can think of images as 2 D inputs. Now again I am trying

to do the same thing, the setup is the same, the story just changes from laser to a camera

now. So,  I  have  taken  an image  maybe the  image was captured  and I  am not  very

confident about all the pixels that I have captured ok.

So, now for any given pixel, I want to re-estimate it, using it is neighborhood that is what

I want to do ok. So, this is the pixel, I am going to look at some neighborhood around it

right. So, every cell here is 1 pixel, just assume that every cell here is 1 pixel. So now, I

am going to re-estimate this pixel by taking a weighted average of all its neighborhoods

right. So now, can you tell me, what is my filter going to look like in this particular case?

My filter would be just 3 cross 3, right. So, whatever neighbors I want to average on for

every neighbor, I want a weight. So, if I am going to average on a neighborhood of 3



cross 3 then for each of these, I will want a weight. So, my filter would also be of size 3

cross 3, how many of you get this? Ok.

So, we now like to use a 2 D filter, which would be m cross n and in general it would be

m cross m. So, it would always be a square filter, but I am just taking the case. Now what

this nasty looking formula is doing, right? So, I have a particular pixel. So, this is an

image. So, I will refer to this pixel as I ij right. So, it is the ith ijth entry in the image, I

want a revised estimate for that I want an Sij for that. 

So the way, I am going to do that is I am going to look at m rows and n columns before it

right. So, I am going to look at this neighborhood of m cross n and for each of these, I

would have a weight associated with it. So, if I am looking at say for example, this was 4

comma 4, this pixel was 4 comma 4 then, I will look at 4 minus 1 comma 4 minus 1. So,

that would be I 3 comma 3. So, I will look at that neighbor and with that neighbor, I

would have some weight associated, do you get that how this formula expands?

So, this formula would have m cross n terms, for every term, you would have a have a

weight and that weight, you can just represented as this filter matrix. So, you get this

what this formula is doing? It looks a bit nasty, but it is just the weighted average of all

the neighborhood that you have and the neighborhood is a 2 dimensional neighborhood,

in this case. How many if you get this properly, ok? 

Now this, in this formula actually, I am looking at minus a and minus b; that means, I am

looking at previous neighbors right. Now you should have these questions right, why

previous  neighbors,  why  not  future  neighbors?  So,  why  am  I  not  looking  at  this

neighborhood?



(Refer Slide Time: 08:51)

So there is no correct answer here, different convolution operations, I mean different

packages use different convolution operations, but the most standard one, I believe is

when you look at the next neighborhood right; that means, you had at this pixel and you

will look at this neighborhood, the neighborhood after it right not the before it ok.

And in fact, so this is the formula that, I am going to look at plus j and plus p; that

means, I am looking at pixels in the rows after this and in the columns after this pixel, all

of you get this instead of before? Now what is even more natural to do? The names

surrounding thing right. So, I will have this pixel and I will look at it is such a way that,

this  pixel  is  the center  of  the neighborhood right.  So that  is  what  I  am going to  go

towards  after  a  couple  of  slides  and that  is  what,  I  will  use  for  all  my convolution

operations, but in terms of textbook definitions these are the definitions that, you will

find in textbooks ok. 



(Refer Slide Time: 09:35)

So, let us let us apply this to a toy example. So, I have this input, which is 2 dimensional

input, I have a kernel which is a 2 cross 2 kernel. So, my m is equal to n is equal to 2. So,

I am going to place this kernel at this location and then what will I get as the output?

(Refer Slide Time: 10:01)

a into w plus b into x plus e into y plus f into z right and I will keep sliding this to get the

other entries. Do you observe something about the input and the output?

Student: (Refer Time: 10:07).



Size, the output size has reduced, why? We will get back to this.

(Refer Slide Time: 10:19)

So right now, I just you to notice it is obvious nothing great about it, but I will just get

back to it more formally later on.

So, for the rest of the discussion, we will use the following formula for convolution,

which is the centered formula right. So, m by 2 to m by 2; that means, I will be looking

at a neighborhood, which is centered on the pixel of interest that is why this minus m by

2 to plus m by 2. Is that fine? 

(Refer Slide Time: 10:35)



So, this is how I am going to look at it. So, this is how I will place, if this is the pixel of

interest, which I want to re estimate, I will replace the kernel such that it, this pixel lies at

the center of the kernel ok.

(Refer Slide Time: 10:49)

So, we will be looking at both preceding and succeeding neighbors ok.

(Refer Slide Time: 10:51)

So, let us see some examples of 2 D convolutions applied to images.



(Refer Slide Time: 10:57)

So this is an image, I decide to apply the following convolution operation to edge ok, tell

me what the resulting image would be?

Student: Blurred.

Blurred, why blurred?

Student: We are taking average.

We are taking the average right. So, it would be blurred, you get the intuition. So this

kernel basically, I have fitted at every pixel and I have computed the average around it

and place at pixel by that average value and when we are going to take average things are

going to get blurred right, because all the sharpness is gone ok. 



(Refer Slide Time: 11:23)

Now let us look at this kernel, what will this do? Sharpen why? Because one was blurred

the other has to be sharpened, what is happening here?

Student: (Refer Time: 11:29).

It is subtracting the neighbor’s right. So you are taking 5 times the current pixel and

subtracting the neighbors from it right. So, if the neighbors are similar, those would get

subtracted and this would stand out really right, does that make sense? 

This will result in a, but this in my on my laptop, this looks like a sharpened image, I do

not know why it is looking like this here ok, it is a sharpened image just trust me, you

can so actually are common right. So, people who have used adobe or any of these photo

shopping software’s right.  So, you have this  click button and where you say take an

image sharpen and blur it. So, this is exactly what the tool is doing in the background, it

is applying this convolution operation throughout the image.

So, when you say blur it is basically, placing that convolution operation throughout the

image and computing the blurred image and same for sharpening and all  these other

spatial effects that, you have most of them come out of some convolution operation ok.



(Refer Slide Time: 12:23)

So for example, the next one, what would this do? 

Student: (Refer Time: 12:26).

So, I will give you a hint, when will this result in a 0 output?

Student: (Refer Time: 12:32).

When all the neighbors are the same as this, right so then, when will it result in a nonzero

output?

Student: (Refer Time: 12:37).

When there is a difference, when there is a difference. So, looking at this image tell me

one place, where you know that it will result in nonzero output?

Student: (Refer Time: 12:45).

All the boundaries right. So, this is basically an edge detector in the slides, it appears

properly ok. So, this is basically an edge detector and you get the intuition that these

boundaries, whether neighbors are not the same as the current pixel, you will not get a 0

value. In this case, when all the neighbors are the same as the current pixel, so you are

taking the sum of the 8 neighbors and subtracting the current value 8 times. So, that

would be 0 right ok.



(Refer Slide Time: 13:11)

So enough of examples, so now, we will see a working example of a 2 D convolution.

So, I just want to drill this idea of what happens, when you do a 2 D convolution.

(Refer Slide Time: 13:19)

So, what we are going to do is, we have this 3 cross 3 kernel and assume that everything

here is a pixel ok, everything here is a pixel. So, I am going to slide this 3 cross 3 kernel

across this filter, now when I place the filter once on the image how many outputs do I

get?

Student: 1.



1 output. So, if I keep sliding it across the image, I will keep getting 1 1 pixel in the

output ok. So, what the resulting thing that I get is known as a feature map ok, because it

is the original input that we have taken. For every pixel, you have tried to approximate it

or whatever filter weights you have applied and it necessarily does not mean, that you

are taking an average, it could be some weird average of your neighborhood right. So,

you have extracted some features from there. 

So for example, in the edge detector case, you could think of it that you have extracted

the feature that this pixel does not lie at a boundary right, that is why you get the black

pixel. Do you get that? You see this way of interpreting a convolution operation that, you

are trying to extract some features from that neighborhood.

So, in this earlier example whenever you got a black you are basically extracting the

feature that this pixel does not lie at a boundary. Is that ok, fine? So now, you could get

one such feature map by using a single 3 cross 3 convolution operation ok. If I use

multiple such convolution operations, what would happen? I will get multiple feature

maps ok. So, let us try to understand this, what is the dimension of my original image, m

cross n into 3. Why is it into 3?

Student: RGB channels.

RGB channels ok. RGB is what we will have right. So, we will have this 3 cross m cross

n. So, we will return back to this idea and from now this one image by using a single

kernel, so this, in fact in for this figure right, I am assuming that the input is 1 cross m

cross and I am not assuming there are 3 channels although, it is a colored image, but just

bear with me. So, it is a 1 cross m cross an image and when I apply a filter, I get a 1

feature map, if I apply k such filters, I will get k feature maps. So one feature map could

be for the blurring one, one could be the sharpening one, one could be the edge detector

and so on right. There are various such filters that you could apply.
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Now, in the 1 D case, we slide a 1 dimensional filter over a 1 dimensional input, in the 2

D case, we slide a 2 dimensional filter on a 2 dimensional input. What would happen in

the 3D case?

(Refer Slide Time: 15:45)

So, now, we are going to this RGB images right. So, we will have 3 cross m cross n as

the input, what would happen in the 3 D case not 3 G?



(Refer Slide Time: 15:55)

So, what would a 3 D filter look like? 

Student: Box.

Look like a cuboid, a box basically and we will call it a volume, why volume? Because it

has a width, it has a height and it will have a depth. So, this is what a 3 D filter would

look like. I will assume that it is depth is the same as the depth of your input. What is the

depth of your input in this case?

Student: 3.

3. So, I will assume that the depth of the filter is the same as a depth of the input and the

width and height could be 3 cross 3, 5 cross 5, 7 cross 7, anything right. So, we will get

into that in more details later on. So, once again we slide this volume across the entire

image ok, what is the output going to be, 2 D or 3 D?

Student: 2D.

Why? So when I was 1 D I was getting 1 D output, when I was 2 D I was getting 2 D

output, 3 D again 2 D output why? Because I have assumed that, no not width. 

Student: (Refer Time: 16:49).



The depth of the filter is the same as the depth of the input. So now, you just imagine this

if you can suppose the filter was of depth 2 instead of 3 then, I would slide it horizontally

first, vertically and then across the depth also. So, then what would be output be in that

case?

Student: 3 dimensional.

3 dimensional and it would have depth of 2.

Student: 2.

Everyone gets that right, but for this lecture I am always going to assume that the depth

of the filter is equal to the depth of the input always right and that is how it is for all the

convolution neural networks, that we will see the depth of the input is going to be equal

to the depth of the filter, the rather the depth of the filter is going to be e qual to the depth

of the input. So whenever, I apply a 3 D filter I am actually doing a 2 D convolution

because, I am moving only along the width and the height, I am not moving along the

depth. So, the output is going to be 2 D. So now, can I have multiple such filters? Yes

each filter will give me a 2 D output, if I have k such filters I will have a.

Student: (Refer Time: 17:54).

k cross 2 D output right k 2 D outputs fine. 


