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Relation between SVD and word2Vec

Now, and later on actually the same guys, they also came up with this formal relation

between SVD and word2vec which is again under some assumptions.
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But I am not going to do the proof here. I am just going to give you the intuition. So,

recall that SVD does a matrix factorization of the co occurrence matrix levy et al showed

that word2vec also does such a implicit matrix factorization. So, what does this mean?

So, recall that word2vec gives us W context and W word. It gives us these 2 parameters.

So, they say that there exist a matrix M such that this is wrong, just be the product of 2

matrices right this is the product of 2 matrices. It should be W context transpose, W word

or just see which way the transpose should be. 

So, it is actually a product of these 2 matrices that we have learnt and what is m m is

actually nothing, but the PMI matrix minus this log k, where does the k come from?

What was k? The negative samples that you have taken; so, they actually showed that

whatever  representations  word2vec  runs;  it  is  actually  doing  a  factorization  of  this

matrix,  where this matrix has a strong connection to the PMI matrix.  And SVD also

works with the PMI matrix, right.

If you take SVD matrix and do these modifications to it;  that means, you take every

value which is the PMI and then subtract this log k from that. And then just do an SVD

of that you will essentially get back the same word representations as word2vec. 

There was some certain assumptions made in the paper, but that is I mean, I do not want

to go into those,  but the key idea here is  that,  you can actually  show that SVD and

word2vec are actually connected. And if you think about it at an intuitive level, though



these methods are relying on the same underlying principle that words appear together.

Based on that, the word representations get updated or an SVD based on there the counts

get updated and you then eventually end up with certain representation.

Next the underlying principle is the same. So, there has to be a connection right it is not

that they are doing fundamentally something different both of them are relying on the

idea of co occurrence or the idea of distribution right. So, they have to at some level be

similar in some ways right. So, that is what they finally, showed and so, now, but still in

most applications word2vec is preferred. 

So, one reason for that is, that this is an iterative training position right as compared to

SVD and I  come back  to  your  question,  right?  How do you do that?  How do you

compute the eigenvectors of X transpose X? And the answer is, there is no simple way of

doing that and you have to do that expensive matrix multiplication.

And then rely on various very smart libraries for computing the eigenvectors which are

still order n raise to 2 point something or something like that they not order n cube, but

they are still order n raise to 2 point something, means they are still expensive. And then

of course, you have this memory issue that if you have a very large vocabulary, your PMI

matrix is going to be very high dimensional. And then you need to do the factorization of

that  high dimensional  vectors  right.  So,  that  runs into these computational  efficiency

issues.

On the other hand, word2vec by design is an iterative algorithm because, you are going

to grade gradient descent which is that every times that you are going to update some

parameters of the model. You are not learning all the parameters together. You are only

dealing with some parameters at every time set right. So, that is more computationally

efficient. Especially, if you do the contrastive divergents or the negative sampling or the

hierarchal sample; so, that is why, perhaps it is still more popular than SVD. 

So, that is where we end this lecture. 


