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So, what I will do is I will quickly, go over what we were doing yesterday. And then by

the time people come in we can start with the new stuff right, So, we were looking at. So,

that is so this needs to be corrected someone who pointed out yesterday, same as bag of

words. It should be same problems as the bag of words model right. So, we are trying to

fix this problem where we have this large softmax computation which is very inefficient,

and you wanted ways of getting rid of that. So, the first thing that we were looking at is

using negative sampling right.
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And here the key idea was to con construct this D and D prime, where D prime was the

random corpus and D was a true corpus right.

And how do you create this random corpus is something that, was left at the end and

which I need to go over today.

(Refer Slide Time: 01:05)

So, I will go over that and then we realize that this actually could be modeled using such

a network, where you take the dot product between the word representations, right?
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And try to maximize this to dot product for all the correct pairs by setting up your loss

function accordingly.

(Refer Slide Time: 01:26)

And try to maximize or rather minimize this dot product, minimize this dot product for

all the incorrect pairs by again setting the objective function appropriately right.

So, we had this objective function where we want to maximize the probability that the

pair is correct for the correct pairs and maximize the probability, that the pair is incorrect

for the incorrect pairs, and both these probabilities we had modeled using a sigmoid



function,  and  inside  the  sigmoid  function  we  had  the  dot  product  between  the

corresponding representations.

So, the net effect is you either maximize the dot product of the correct pairs, or minimize

the dot product of the, or rather and in minimize the dot product of the incorrect pairs

fine.
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And then so now today the part which was remaining about the comparison between D

and D prime; so, what I was saying last time is that D prime is actually k times D; that

means, in sample more negative examples than positive examples. So, if you think about

it actually the number of negative examples in the language is much, much more than a

number of positive examples. Let us say if you have 50 k words in your vocabulary most

of them do not appear together, right? So, that number is actually very, very large as

compared to the number of words which can occur together right.

So, how do you account for this natural imbalance? So, they said that if you keep it

same, then we are saying that the size of D prime and D is going to be same; that means,

the words which appear  together  and not to  appear  together  we are keeping those 2

corpora as the same. So, that does not sound reasonable; so, they decided that we will

keep it k times. Now this k was a hyper parameter which was tuned based on the data

that they had. And can you guess, how they would have tuned it, no what do you tune



your parameters on, what did how did you tune your parameters for the back propagation

of the word, no using what ?

Student: (Refer Time: 03:12).

A validation set is it too early in the morning, it fine validation set. So, they might have

had  some validation  set.  And if  you look at  the  original  word  to  word  code which

someone had posted yesterday, which allows you to compute the distance matrix right.

So, you could what you could do is you could learn these representations, take a few

pairs of words. And take a few pairs of good words right say cat and dog or cat and feline

and so on. And also bad words like cat and truck bad combinations rather. And see if the

distance between cat and truck is much, higher than the distance between cat and feline

or cat and dog, right?

So, you select that k which gives you the best performance on your validation set and the

validation set here would essentially be to find if you get good representations for word

pairs that you care about and for word pairs that you do not care about. Now the other

thing was how do you create this R? So, you have v words in the vocabulary you are

looking at one of those w. 

You know that some of those have appeared with w in some context, but there is this

large set which has not appeared with w in any context right. So, you are going to draw

are  from  this  set  and  the  simplest  thing  to  do  would  be  to  just  draw  the  uniform

distribution; that means, all words and let us call this suppose there are capital R words

here all of these words could be drawn from using the quality 1 by R right, where R is

less than v.

Is that fine? That is one way of doing it just randomly pick any word from the remaining

words and put it a pair it with w, but you would also want to account for the individual

frequencies of those words, right? If the word is actually very frequent pair it up more

with w. If it is not frequent do not pair it up enough. Does that make sense? So, I could

actually  use  the  frequencies  of  each  of  these  words.  And  sample  according  to  that

frequency right? Instead of using a unigram distribution.
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So, they did something similar, but they had this hyper parameter again. So, basically I

was sampling using the probability  of r, which is equal to count of r divided by the

number of times number of all the words in the corpus. That is actually the frequency of r

divided by the total number of words in the corpus. So, instead of just taking that they

had this wearied factor of 3 by 4; do you we realize that if you take this 3 by 4 you get

the best performance.

So, let  me just make a few comments on that.  So, the original  code of or rather the

original skip gram or the bag of words model, actually worked very well and it kind of

hard a lot of seminal effect or a lot of revolutionary effect on the field of NLP right. So

now, everyone started talking about word vectors, and how you can use this meaningful

representations of words, as features for various down steep NLP thus right.

So, at the end in NLP what you are doing is you are collecting of a bunch of words a

document or a sentence or something and trying to do some processing on that. Now

earlier used to construct features out of these sentences using some handcrafted features,

but now someone said that there is this automatic way of constructing word features

right, which is using this method. So, people really bought onto that idea and a lot of

work started happening. And then later on at the end of the course we will see something

that what it eventually led to.



But later on when people started analyzing this more carefully right, they realized that

the original word to like implementation,  had a lot of these heuristics or lot of these

parameters, which need to be really tuned to the core for it to be able to compete with

SVD right.  So,  that  is  what  we look at  the  end.  So,  SVD was already  one way of

computing word representations ah, which while popular was not so popular it was used

for  various  reasons,  but  it  was  not  like  every  NPL  application  is  using  SVD

representations  right,  but  now it  is  almost  like  every NPL application  is  using word

representations.

 So, later on we will see that some of these things like 3 by 4 or k the value of k, the

value of learning rate and some other hyper parameters. If you really tuned them very,

very  well  it  is  only  then  that  as  this  word  to  make  algorithm  can  beat  the  world

representations  learned by SVD, or rather the other thing that  if  you introduce some

parameters in SVD and tune them, because remember for SVD there was no tuning right,

we just got a solution. We just had the closed form solution which is the Eigen vectors.

But you could do some things for creating the co-occurrence matrix. If you introduce

some factor there which is also looks like this 3 by 4 or something like that, or if you

also introduced something which looks like a k. Then you will be able to get the same

kind of representations or equally powerful representations from SVD as what you get

from word to it. So, that is why I am stressing on these hyper parameters there is some

significance of those.


